rte_mempool.c revision 32e04ea0
1/*-
2 *   BSD LICENSE
3 *
4 *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5 *   Copyright(c) 2016 6WIND S.A.
6 *   All rights reserved.
7 *
8 *   Redistribution and use in source and binary forms, with or without
9 *   modification, are permitted provided that the following conditions
10 *   are met:
11 *
12 *     * Redistributions of source code must retain the above copyright
13 *       notice, this list of conditions and the following disclaimer.
14 *     * Redistributions in binary form must reproduce the above copyright
15 *       notice, this list of conditions and the following disclaimer in
16 *       the documentation and/or other materials provided with the
17 *       distribution.
18 *     * Neither the name of Intel Corporation nor the names of its
19 *       contributors may be used to endorse or promote products derived
20 *       from this software without specific prior written permission.
21 *
22 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35#include <stdio.h>
36#include <string.h>
37#include <stdint.h>
38#include <stdarg.h>
39#include <unistd.h>
40#include <inttypes.h>
41#include <errno.h>
42#include <sys/queue.h>
43#include <sys/mman.h>
44
45#include <rte_common.h>
46#include <rte_log.h>
47#include <rte_debug.h>
48#include <rte_memory.h>
49#include <rte_memzone.h>
50#include <rte_malloc.h>
51#include <rte_atomic.h>
52#include <rte_launch.h>
53#include <rte_eal.h>
54#include <rte_eal_memconfig.h>
55#include <rte_per_lcore.h>
56#include <rte_lcore.h>
57#include <rte_branch_prediction.h>
58#include <rte_ring.h>
59#include <rte_errno.h>
60#include <rte_string_fns.h>
61#include <rte_spinlock.h>
62
63#include "rte_mempool.h"
64
65TAILQ_HEAD(rte_mempool_list, rte_tailq_entry);
66
67static struct rte_tailq_elem rte_mempool_tailq = {
68	.name = "RTE_MEMPOOL",
69};
70EAL_REGISTER_TAILQ(rte_mempool_tailq)
71
72#define CACHE_FLUSHTHRESH_MULTIPLIER 1.5
73#define CALC_CACHE_FLUSHTHRESH(c)	\
74	((typeof(c))((c) * CACHE_FLUSHTHRESH_MULTIPLIER))
75
76/*
77 * return the greatest common divisor between a and b (fast algorithm)
78 *
79 */
80static unsigned get_gcd(unsigned a, unsigned b)
81{
82	unsigned c;
83
84	if (0 == a)
85		return b;
86	if (0 == b)
87		return a;
88
89	if (a < b) {
90		c = a;
91		a = b;
92		b = c;
93	}
94
95	while (b != 0) {
96		c = a % b;
97		a = b;
98		b = c;
99	}
100
101	return a;
102}
103
104/*
105 * Depending on memory configuration, objects addresses are spread
106 * between channels and ranks in RAM: the pool allocator will add
107 * padding between objects. This function return the new size of the
108 * object.
109 */
110static unsigned optimize_object_size(unsigned obj_size)
111{
112	unsigned nrank, nchan;
113	unsigned new_obj_size;
114
115	/* get number of channels */
116	nchan = rte_memory_get_nchannel();
117	if (nchan == 0)
118		nchan = 4;
119
120	nrank = rte_memory_get_nrank();
121	if (nrank == 0)
122		nrank = 1;
123
124	/* process new object size */
125	new_obj_size = (obj_size + RTE_MEMPOOL_ALIGN_MASK) / RTE_MEMPOOL_ALIGN;
126	while (get_gcd(new_obj_size, nrank * nchan) != 1)
127		new_obj_size++;
128	return new_obj_size * RTE_MEMPOOL_ALIGN;
129}
130
131static void
132mempool_add_elem(struct rte_mempool *mp, void *obj, phys_addr_t physaddr)
133{
134	struct rte_mempool_objhdr *hdr;
135	struct rte_mempool_objtlr *tlr __rte_unused;
136
137	/* set mempool ptr in header */
138	hdr = RTE_PTR_SUB(obj, sizeof(*hdr));
139	hdr->mp = mp;
140	hdr->physaddr = physaddr;
141	STAILQ_INSERT_TAIL(&mp->elt_list, hdr, next);
142	mp->populated_size++;
143
144#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
145	hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
146	tlr = __mempool_get_trailer(obj);
147	tlr->cookie = RTE_MEMPOOL_TRAILER_COOKIE;
148#endif
149
150	/* enqueue in ring */
151	rte_mempool_ops_enqueue_bulk(mp, &obj, 1);
152}
153
154/* call obj_cb() for each mempool element */
155uint32_t
156rte_mempool_obj_iter(struct rte_mempool *mp,
157	rte_mempool_obj_cb_t *obj_cb, void *obj_cb_arg)
158{
159	struct rte_mempool_objhdr *hdr;
160	void *obj;
161	unsigned n = 0;
162
163	STAILQ_FOREACH(hdr, &mp->elt_list, next) {
164		obj = (char *)hdr + sizeof(*hdr);
165		obj_cb(mp, obj_cb_arg, obj, n);
166		n++;
167	}
168
169	return n;
170}
171
172/* call mem_cb() for each mempool memory chunk */
173uint32_t
174rte_mempool_mem_iter(struct rte_mempool *mp,
175	rte_mempool_mem_cb_t *mem_cb, void *mem_cb_arg)
176{
177	struct rte_mempool_memhdr *hdr;
178	unsigned n = 0;
179
180	STAILQ_FOREACH(hdr, &mp->mem_list, next) {
181		mem_cb(mp, mem_cb_arg, hdr, n);
182		n++;
183	}
184
185	return n;
186}
187
188/* get the header, trailer and total size of a mempool element. */
189uint32_t
190rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
191	struct rte_mempool_objsz *sz)
192{
193	struct rte_mempool_objsz lsz;
194
195	sz = (sz != NULL) ? sz : &lsz;
196
197	sz->header_size = sizeof(struct rte_mempool_objhdr);
198	if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0)
199		sz->header_size = RTE_ALIGN_CEIL(sz->header_size,
200			RTE_MEMPOOL_ALIGN);
201
202#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
203	sz->trailer_size = sizeof(struct rte_mempool_objtlr);
204#else
205	sz->trailer_size = 0;
206#endif
207
208	/* element size is 8 bytes-aligned at least */
209	sz->elt_size = RTE_ALIGN_CEIL(elt_size, sizeof(uint64_t));
210
211	/* expand trailer to next cache line */
212	if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0) {
213		sz->total_size = sz->header_size + sz->elt_size +
214			sz->trailer_size;
215		sz->trailer_size += ((RTE_MEMPOOL_ALIGN -
216				  (sz->total_size & RTE_MEMPOOL_ALIGN_MASK)) &
217				 RTE_MEMPOOL_ALIGN_MASK);
218	}
219
220	/*
221	 * increase trailer to add padding between objects in order to
222	 * spread them across memory channels/ranks
223	 */
224	if ((flags & MEMPOOL_F_NO_SPREAD) == 0) {
225		unsigned new_size;
226		new_size = optimize_object_size(sz->header_size + sz->elt_size +
227			sz->trailer_size);
228		sz->trailer_size = new_size - sz->header_size - sz->elt_size;
229	}
230
231	/* this is the size of an object, including header and trailer */
232	sz->total_size = sz->header_size + sz->elt_size + sz->trailer_size;
233
234	return sz->total_size;
235}
236
237
238/*
239 * Calculate maximum amount of memory required to store given number of objects.
240 */
241size_t
242rte_mempool_xmem_size(uint32_t elt_num, size_t total_elt_sz, uint32_t pg_shift)
243{
244	size_t obj_per_page, pg_num, pg_sz;
245
246	if (total_elt_sz == 0)
247		return 0;
248
249	if (pg_shift == 0)
250		return total_elt_sz * elt_num;
251
252	pg_sz = (size_t)1 << pg_shift;
253	obj_per_page = pg_sz / total_elt_sz;
254	if (obj_per_page == 0)
255		return RTE_ALIGN_CEIL(total_elt_sz, pg_sz) * elt_num;
256
257	pg_num = (elt_num + obj_per_page - 1) / obj_per_page;
258	return pg_num << pg_shift;
259}
260
261/*
262 * Calculate how much memory would be actually required with the
263 * given memory footprint to store required number of elements.
264 */
265ssize_t
266rte_mempool_xmem_usage(__rte_unused void *vaddr, uint32_t elt_num,
267	size_t total_elt_sz, const phys_addr_t paddr[], uint32_t pg_num,
268	uint32_t pg_shift)
269{
270	uint32_t elt_cnt = 0;
271	phys_addr_t start, end;
272	uint32_t paddr_idx;
273	size_t pg_sz = (size_t)1 << pg_shift;
274
275	/* if paddr is NULL, assume contiguous memory */
276	if (paddr == NULL) {
277		start = 0;
278		end = pg_sz * pg_num;
279		paddr_idx = pg_num;
280	} else {
281		start = paddr[0];
282		end = paddr[0] + pg_sz;
283		paddr_idx = 1;
284	}
285	while (elt_cnt < elt_num) {
286
287		if (end - start >= total_elt_sz) {
288			/* enough contiguous memory, add an object */
289			start += total_elt_sz;
290			elt_cnt++;
291		} else if (paddr_idx < pg_num) {
292			/* no room to store one obj, add a page */
293			if (end == paddr[paddr_idx]) {
294				end += pg_sz;
295			} else {
296				start = paddr[paddr_idx];
297				end = paddr[paddr_idx] + pg_sz;
298			}
299			paddr_idx++;
300
301		} else {
302			/* no more page, return how many elements fit */
303			return -(size_t)elt_cnt;
304		}
305	}
306
307	return (size_t)paddr_idx << pg_shift;
308}
309
310/* free a memchunk allocated with rte_memzone_reserve() */
311static void
312rte_mempool_memchunk_mz_free(__rte_unused struct rte_mempool_memhdr *memhdr,
313	void *opaque)
314{
315	const struct rte_memzone *mz = opaque;
316	rte_memzone_free(mz);
317}
318
319/* Free memory chunks used by a mempool. Objects must be in pool */
320static void
321rte_mempool_free_memchunks(struct rte_mempool *mp)
322{
323	struct rte_mempool_memhdr *memhdr;
324	void *elt;
325
326	while (!STAILQ_EMPTY(&mp->elt_list)) {
327		rte_mempool_ops_dequeue_bulk(mp, &elt, 1);
328		(void)elt;
329		STAILQ_REMOVE_HEAD(&mp->elt_list, next);
330		mp->populated_size--;
331	}
332
333	while (!STAILQ_EMPTY(&mp->mem_list)) {
334		memhdr = STAILQ_FIRST(&mp->mem_list);
335		STAILQ_REMOVE_HEAD(&mp->mem_list, next);
336		if (memhdr->free_cb != NULL)
337			memhdr->free_cb(memhdr, memhdr->opaque);
338		rte_free(memhdr);
339		mp->nb_mem_chunks--;
340	}
341}
342
343/* Add objects in the pool, using a physically contiguous memory
344 * zone. Return the number of objects added, or a negative value
345 * on error.
346 */
347int
348rte_mempool_populate_phys(struct rte_mempool *mp, char *vaddr,
349	phys_addr_t paddr, size_t len, rte_mempool_memchunk_free_cb_t *free_cb,
350	void *opaque)
351{
352	unsigned total_elt_sz;
353	unsigned i = 0;
354	size_t off;
355	struct rte_mempool_memhdr *memhdr;
356	int ret;
357
358	/* create the internal ring if not already done */
359	if ((mp->flags & MEMPOOL_F_POOL_CREATED) == 0) {
360		ret = rte_mempool_ops_alloc(mp);
361		if (ret != 0)
362			return ret;
363		mp->flags |= MEMPOOL_F_POOL_CREATED;
364	}
365
366	/* mempool is already populated */
367	if (mp->populated_size >= mp->size)
368		return -ENOSPC;
369
370	total_elt_sz = mp->header_size + mp->elt_size + mp->trailer_size;
371
372	memhdr = rte_zmalloc("MEMPOOL_MEMHDR", sizeof(*memhdr), 0);
373	if (memhdr == NULL)
374		return -ENOMEM;
375
376	memhdr->mp = mp;
377	memhdr->addr = vaddr;
378	memhdr->phys_addr = paddr;
379	memhdr->len = len;
380	memhdr->free_cb = free_cb;
381	memhdr->opaque = opaque;
382
383	if (mp->flags & MEMPOOL_F_NO_CACHE_ALIGN)
384		off = RTE_PTR_ALIGN_CEIL(vaddr, 8) - vaddr;
385	else
386		off = RTE_PTR_ALIGN_CEIL(vaddr, RTE_CACHE_LINE_SIZE) - vaddr;
387
388	while (off + total_elt_sz <= len && mp->populated_size < mp->size) {
389		off += mp->header_size;
390		if (paddr == RTE_BAD_PHYS_ADDR)
391			mempool_add_elem(mp, (char *)vaddr + off,
392				RTE_BAD_PHYS_ADDR);
393		else
394			mempool_add_elem(mp, (char *)vaddr + off, paddr + off);
395		off += mp->elt_size + mp->trailer_size;
396		i++;
397	}
398
399	/* not enough room to store one object */
400	if (i == 0)
401		return -EINVAL;
402
403	STAILQ_INSERT_TAIL(&mp->mem_list, memhdr, next);
404	mp->nb_mem_chunks++;
405	return i;
406}
407
408/* Add objects in the pool, using a table of physical pages. Return the
409 * number of objects added, or a negative value on error.
410 */
411int
412rte_mempool_populate_phys_tab(struct rte_mempool *mp, char *vaddr,
413	const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift,
414	rte_mempool_memchunk_free_cb_t *free_cb, void *opaque)
415{
416	uint32_t i, n;
417	int ret, cnt = 0;
418	size_t pg_sz = (size_t)1 << pg_shift;
419
420	/* mempool must not be populated */
421	if (mp->nb_mem_chunks != 0)
422		return -EEXIST;
423
424	if (mp->flags & MEMPOOL_F_NO_PHYS_CONTIG)
425		return rte_mempool_populate_phys(mp, vaddr, RTE_BAD_PHYS_ADDR,
426			pg_num * pg_sz, free_cb, opaque);
427
428	for (i = 0; i < pg_num && mp->populated_size < mp->size; i += n) {
429
430		/* populate with the largest group of contiguous pages */
431		for (n = 1; (i + n) < pg_num &&
432			     paddr[i + n - 1] + pg_sz == paddr[i + n]; n++)
433			;
434
435		ret = rte_mempool_populate_phys(mp, vaddr + i * pg_sz,
436			paddr[i], n * pg_sz, free_cb, opaque);
437		if (ret < 0) {
438			rte_mempool_free_memchunks(mp);
439			return ret;
440		}
441		/* no need to call the free callback for next chunks */
442		free_cb = NULL;
443		cnt += ret;
444	}
445	return cnt;
446}
447
448/* Populate the mempool with a virtual area. Return the number of
449 * objects added, or a negative value on error.
450 */
451int
452rte_mempool_populate_virt(struct rte_mempool *mp, char *addr,
453	size_t len, size_t pg_sz, rte_mempool_memchunk_free_cb_t *free_cb,
454	void *opaque)
455{
456	phys_addr_t paddr;
457	size_t off, phys_len;
458	int ret, cnt = 0;
459
460	/* mempool must not be populated */
461	if (mp->nb_mem_chunks != 0)
462		return -EEXIST;
463	/* address and len must be page-aligned */
464	if (RTE_PTR_ALIGN_CEIL(addr, pg_sz) != addr)
465		return -EINVAL;
466	if (RTE_ALIGN_CEIL(len, pg_sz) != len)
467		return -EINVAL;
468
469	if (mp->flags & MEMPOOL_F_NO_PHYS_CONTIG)
470		return rte_mempool_populate_phys(mp, addr, RTE_BAD_PHYS_ADDR,
471			len, free_cb, opaque);
472
473	for (off = 0; off + pg_sz <= len &&
474		     mp->populated_size < mp->size; off += phys_len) {
475
476		paddr = rte_mem_virt2phy(addr + off);
477		/* required for xen_dom0 to get the machine address */
478		paddr = rte_mem_phy2mch(-1, paddr);
479
480		if (paddr == RTE_BAD_PHYS_ADDR) {
481			ret = -EINVAL;
482			goto fail;
483		}
484
485		/* populate with the largest group of contiguous pages */
486		for (phys_len = pg_sz; off + phys_len < len; phys_len += pg_sz) {
487			phys_addr_t paddr_tmp;
488
489			paddr_tmp = rte_mem_virt2phy(addr + off + phys_len);
490			paddr_tmp = rte_mem_phy2mch(-1, paddr_tmp);
491
492			if (paddr_tmp != paddr + phys_len)
493				break;
494		}
495
496		ret = rte_mempool_populate_phys(mp, addr + off, paddr,
497			phys_len, free_cb, opaque);
498		if (ret < 0)
499			goto fail;
500		/* no need to call the free callback for next chunks */
501		free_cb = NULL;
502		cnt += ret;
503	}
504
505	return cnt;
506
507 fail:
508	rte_mempool_free_memchunks(mp);
509	return ret;
510}
511
512/* Default function to populate the mempool: allocate memory in memzones,
513 * and populate them. Return the number of objects added, or a negative
514 * value on error.
515 */
516int
517rte_mempool_populate_default(struct rte_mempool *mp)
518{
519	int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
520	char mz_name[RTE_MEMZONE_NAMESIZE];
521	const struct rte_memzone *mz;
522	size_t size, total_elt_sz, align, pg_sz, pg_shift;
523	phys_addr_t paddr;
524	unsigned mz_id, n;
525	int ret;
526
527	/* mempool must not be populated */
528	if (mp->nb_mem_chunks != 0)
529		return -EEXIST;
530
531	if (rte_xen_dom0_supported()) {
532		pg_sz = RTE_PGSIZE_2M;
533		pg_shift = rte_bsf32(pg_sz);
534		align = pg_sz;
535	} else if (rte_eal_has_hugepages()) {
536		pg_shift = 0; /* not needed, zone is physically contiguous */
537		pg_sz = 0;
538		align = RTE_CACHE_LINE_SIZE;
539	} else {
540		pg_sz = getpagesize();
541		pg_shift = rte_bsf32(pg_sz);
542		align = pg_sz;
543	}
544
545	total_elt_sz = mp->header_size + mp->elt_size + mp->trailer_size;
546	for (mz_id = 0, n = mp->size; n > 0; mz_id++, n -= ret) {
547		size = rte_mempool_xmem_size(n, total_elt_sz, pg_shift);
548
549		ret = snprintf(mz_name, sizeof(mz_name),
550			RTE_MEMPOOL_MZ_FORMAT "_%d", mp->name, mz_id);
551		if (ret < 0 || ret >= (int)sizeof(mz_name)) {
552			ret = -ENAMETOOLONG;
553			goto fail;
554		}
555
556		mz = rte_memzone_reserve_aligned(mz_name, size,
557			mp->socket_id, mz_flags, align);
558		/* not enough memory, retry with the biggest zone we have */
559		if (mz == NULL)
560			mz = rte_memzone_reserve_aligned(mz_name, 0,
561				mp->socket_id, mz_flags, align);
562		if (mz == NULL) {
563			ret = -rte_errno;
564			goto fail;
565		}
566
567		if (mp->flags & MEMPOOL_F_NO_PHYS_CONTIG)
568			paddr = RTE_BAD_PHYS_ADDR;
569		else
570			paddr = mz->phys_addr;
571
572		if (rte_eal_has_hugepages() && !rte_xen_dom0_supported())
573			ret = rte_mempool_populate_phys(mp, mz->addr,
574				paddr, mz->len,
575				rte_mempool_memchunk_mz_free,
576				(void *)(uintptr_t)mz);
577		else
578			ret = rte_mempool_populate_virt(mp, mz->addr,
579				mz->len, pg_sz,
580				rte_mempool_memchunk_mz_free,
581				(void *)(uintptr_t)mz);
582		if (ret < 0) {
583			rte_memzone_free(mz);
584			goto fail;
585		}
586	}
587
588	return mp->size;
589
590 fail:
591	rte_mempool_free_memchunks(mp);
592	return ret;
593}
594
595/* return the memory size required for mempool objects in anonymous mem */
596static size_t
597get_anon_size(const struct rte_mempool *mp)
598{
599	size_t size, total_elt_sz, pg_sz, pg_shift;
600
601	pg_sz = getpagesize();
602	pg_shift = rte_bsf32(pg_sz);
603	total_elt_sz = mp->header_size + mp->elt_size + mp->trailer_size;
604	size = rte_mempool_xmem_size(mp->size, total_elt_sz, pg_shift);
605
606	return size;
607}
608
609/* unmap a memory zone mapped by rte_mempool_populate_anon() */
610static void
611rte_mempool_memchunk_anon_free(struct rte_mempool_memhdr *memhdr,
612	void *opaque)
613{
614	munmap(opaque, get_anon_size(memhdr->mp));
615}
616
617/* populate the mempool with an anonymous mapping */
618int
619rte_mempool_populate_anon(struct rte_mempool *mp)
620{
621	size_t size;
622	int ret;
623	char *addr;
624
625	/* mempool is already populated, error */
626	if (!STAILQ_EMPTY(&mp->mem_list)) {
627		rte_errno = EINVAL;
628		return 0;
629	}
630
631	/* get chunk of virtually continuous memory */
632	size = get_anon_size(mp);
633	addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
634		MAP_SHARED | MAP_ANONYMOUS, -1, 0);
635	if (addr == MAP_FAILED) {
636		rte_errno = errno;
637		return 0;
638	}
639	/* can't use MMAP_LOCKED, it does not exist on BSD */
640	if (mlock(addr, size) < 0) {
641		rte_errno = errno;
642		munmap(addr, size);
643		return 0;
644	}
645
646	ret = rte_mempool_populate_virt(mp, addr, size, getpagesize(),
647		rte_mempool_memchunk_anon_free, addr);
648	if (ret == 0)
649		goto fail;
650
651	return mp->populated_size;
652
653 fail:
654	rte_mempool_free_memchunks(mp);
655	return 0;
656}
657
658/* free a mempool */
659void
660rte_mempool_free(struct rte_mempool *mp)
661{
662	struct rte_mempool_list *mempool_list = NULL;
663	struct rte_tailq_entry *te;
664
665	if (mp == NULL)
666		return;
667
668	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
669	rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
670	/* find out tailq entry */
671	TAILQ_FOREACH(te, mempool_list, next) {
672		if (te->data == (void *)mp)
673			break;
674	}
675
676	if (te != NULL) {
677		TAILQ_REMOVE(mempool_list, te, next);
678		rte_free(te);
679	}
680	rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
681
682	rte_mempool_free_memchunks(mp);
683	rte_mempool_ops_free(mp);
684	rte_memzone_free(mp->mz);
685}
686
687static void
688mempool_cache_init(struct rte_mempool_cache *cache, uint32_t size)
689{
690	cache->size = size;
691	cache->flushthresh = CALC_CACHE_FLUSHTHRESH(size);
692	cache->len = 0;
693}
694
695/*
696 * Create and initialize a cache for objects that are retrieved from and
697 * returned to an underlying mempool. This structure is identical to the
698 * local_cache[lcore_id] pointed to by the mempool structure.
699 */
700struct rte_mempool_cache *
701rte_mempool_cache_create(uint32_t size, int socket_id)
702{
703	struct rte_mempool_cache *cache;
704
705	if (size == 0 || size > RTE_MEMPOOL_CACHE_MAX_SIZE) {
706		rte_errno = EINVAL;
707		return NULL;
708	}
709
710	cache = rte_zmalloc_socket("MEMPOOL_CACHE", sizeof(*cache),
711				  RTE_CACHE_LINE_SIZE, socket_id);
712	if (cache == NULL) {
713		RTE_LOG(ERR, MEMPOOL, "Cannot allocate mempool cache.\n");
714		rte_errno = ENOMEM;
715		return NULL;
716	}
717
718	mempool_cache_init(cache, size);
719
720	return cache;
721}
722
723/*
724 * Free a cache. It's the responsibility of the user to make sure that any
725 * remaining objects in the cache are flushed to the corresponding
726 * mempool.
727 */
728void
729rte_mempool_cache_free(struct rte_mempool_cache *cache)
730{
731	rte_free(cache);
732}
733
734/* create an empty mempool */
735struct rte_mempool *
736rte_mempool_create_empty(const char *name, unsigned n, unsigned elt_size,
737	unsigned cache_size, unsigned private_data_size,
738	int socket_id, unsigned flags)
739{
740	char mz_name[RTE_MEMZONE_NAMESIZE];
741	struct rte_mempool_list *mempool_list;
742	struct rte_mempool *mp = NULL;
743	struct rte_tailq_entry *te = NULL;
744	const struct rte_memzone *mz = NULL;
745	size_t mempool_size;
746	int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
747	struct rte_mempool_objsz objsz;
748	unsigned lcore_id;
749	int ret;
750
751	/* compilation-time checks */
752	RTE_BUILD_BUG_ON((sizeof(struct rte_mempool) &
753			  RTE_CACHE_LINE_MASK) != 0);
754	RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_cache) &
755			  RTE_CACHE_LINE_MASK) != 0);
756#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
757	RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_debug_stats) &
758			  RTE_CACHE_LINE_MASK) != 0);
759	RTE_BUILD_BUG_ON((offsetof(struct rte_mempool, stats) &
760			  RTE_CACHE_LINE_MASK) != 0);
761#endif
762
763	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
764
765	/* asked cache too big */
766	if (cache_size > RTE_MEMPOOL_CACHE_MAX_SIZE ||
767	    CALC_CACHE_FLUSHTHRESH(cache_size) > n) {
768		rte_errno = EINVAL;
769		return NULL;
770	}
771
772	/* "no cache align" imply "no spread" */
773	if (flags & MEMPOOL_F_NO_CACHE_ALIGN)
774		flags |= MEMPOOL_F_NO_SPREAD;
775
776	/* calculate mempool object sizes. */
777	if (!rte_mempool_calc_obj_size(elt_size, flags, &objsz)) {
778		rte_errno = EINVAL;
779		return NULL;
780	}
781
782	rte_rwlock_write_lock(RTE_EAL_MEMPOOL_RWLOCK);
783
784	/*
785	 * reserve a memory zone for this mempool: private data is
786	 * cache-aligned
787	 */
788	private_data_size = (private_data_size +
789			     RTE_MEMPOOL_ALIGN_MASK) & (~RTE_MEMPOOL_ALIGN_MASK);
790
791
792	/* try to allocate tailq entry */
793	te = rte_zmalloc("MEMPOOL_TAILQ_ENTRY", sizeof(*te), 0);
794	if (te == NULL) {
795		RTE_LOG(ERR, MEMPOOL, "Cannot allocate tailq entry!\n");
796		goto exit_unlock;
797	}
798
799	mempool_size = MEMPOOL_HEADER_SIZE(mp, cache_size);
800	mempool_size += private_data_size;
801	mempool_size = RTE_ALIGN_CEIL(mempool_size, RTE_MEMPOOL_ALIGN);
802
803	ret = snprintf(mz_name, sizeof(mz_name), RTE_MEMPOOL_MZ_FORMAT, name);
804	if (ret < 0 || ret >= (int)sizeof(mz_name)) {
805		rte_errno = ENAMETOOLONG;
806		goto exit_unlock;
807	}
808
809	mz = rte_memzone_reserve(mz_name, mempool_size, socket_id, mz_flags);
810	if (mz == NULL)
811		goto exit_unlock;
812
813	/* init the mempool structure */
814	mp = mz->addr;
815	memset(mp, 0, MEMPOOL_HEADER_SIZE(mp, cache_size));
816	ret = snprintf(mp->name, sizeof(mp->name), "%s", name);
817	if (ret < 0 || ret >= (int)sizeof(mp->name)) {
818		rte_errno = ENAMETOOLONG;
819		goto exit_unlock;
820	}
821	mp->mz = mz;
822	mp->socket_id = socket_id;
823	mp->size = n;
824	mp->flags = flags;
825	mp->socket_id = socket_id;
826	mp->elt_size = objsz.elt_size;
827	mp->header_size = objsz.header_size;
828	mp->trailer_size = objsz.trailer_size;
829	/* Size of default caches, zero means disabled. */
830	mp->cache_size = cache_size;
831	mp->private_data_size = private_data_size;
832	STAILQ_INIT(&mp->elt_list);
833	STAILQ_INIT(&mp->mem_list);
834
835	/*
836	 * local_cache pointer is set even if cache_size is zero.
837	 * The local_cache points to just past the elt_pa[] array.
838	 */
839	mp->local_cache = (struct rte_mempool_cache *)
840		RTE_PTR_ADD(mp, MEMPOOL_HEADER_SIZE(mp, 0));
841
842	/* Init all default caches. */
843	if (cache_size != 0) {
844		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
845			mempool_cache_init(&mp->local_cache[lcore_id],
846					   cache_size);
847	}
848
849	te->data = mp;
850
851	rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
852	TAILQ_INSERT_TAIL(mempool_list, te, next);
853	rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
854	rte_rwlock_write_unlock(RTE_EAL_MEMPOOL_RWLOCK);
855
856	return mp;
857
858exit_unlock:
859	rte_rwlock_write_unlock(RTE_EAL_MEMPOOL_RWLOCK);
860	rte_free(te);
861	rte_mempool_free(mp);
862	return NULL;
863}
864
865/* create the mempool */
866struct rte_mempool *
867rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
868	unsigned cache_size, unsigned private_data_size,
869	rte_mempool_ctor_t *mp_init, void *mp_init_arg,
870	rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
871	int socket_id, unsigned flags)
872{
873	struct rte_mempool *mp;
874
875	mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
876		private_data_size, socket_id, flags);
877	if (mp == NULL)
878		return NULL;
879
880	/*
881	 * Since we have 4 combinations of the SP/SC/MP/MC examine the flags to
882	 * set the correct index into the table of ops structs.
883	 */
884	if ((flags & MEMPOOL_F_SP_PUT) && (flags & MEMPOOL_F_SC_GET))
885		rte_mempool_set_ops_byname(mp, "ring_sp_sc", NULL);
886	else if (flags & MEMPOOL_F_SP_PUT)
887		rte_mempool_set_ops_byname(mp, "ring_sp_mc", NULL);
888	else if (flags & MEMPOOL_F_SC_GET)
889		rte_mempool_set_ops_byname(mp, "ring_mp_sc", NULL);
890	else
891		rte_mempool_set_ops_byname(mp, "ring_mp_mc", NULL);
892
893	/* call the mempool priv initializer */
894	if (mp_init)
895		mp_init(mp, mp_init_arg);
896
897	if (rte_mempool_populate_default(mp) < 0)
898		goto fail;
899
900	/* call the object initializers */
901	if (obj_init)
902		rte_mempool_obj_iter(mp, obj_init, obj_init_arg);
903
904	return mp;
905
906 fail:
907	rte_mempool_free(mp);
908	return NULL;
909}
910
911/*
912 * Create the mempool over already allocated chunk of memory.
913 * That external memory buffer can consists of physically disjoint pages.
914 * Setting vaddr to NULL, makes mempool to fallback to original behaviour
915 * and allocate space for mempool and it's elements as one big chunk of
916 * physically continuos memory.
917 */
918struct rte_mempool *
919rte_mempool_xmem_create(const char *name, unsigned n, unsigned elt_size,
920		unsigned cache_size, unsigned private_data_size,
921		rte_mempool_ctor_t *mp_init, void *mp_init_arg,
922		rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
923		int socket_id, unsigned flags, void *vaddr,
924		const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift)
925{
926	struct rte_mempool *mp = NULL;
927	int ret;
928
929	/* no virtual address supplied, use rte_mempool_create() */
930	if (vaddr == NULL)
931		return rte_mempool_create(name, n, elt_size, cache_size,
932			private_data_size, mp_init, mp_init_arg,
933			obj_init, obj_init_arg, socket_id, flags);
934
935	/* check that we have both VA and PA */
936	if (paddr == NULL) {
937		rte_errno = EINVAL;
938		return NULL;
939	}
940
941	/* Check that pg_shift parameter is valid. */
942	if (pg_shift > MEMPOOL_PG_SHIFT_MAX) {
943		rte_errno = EINVAL;
944		return NULL;
945	}
946
947	mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
948		private_data_size, socket_id, flags);
949	if (mp == NULL)
950		return NULL;
951
952	/* call the mempool priv initializer */
953	if (mp_init)
954		mp_init(mp, mp_init_arg);
955
956	ret = rte_mempool_populate_phys_tab(mp, vaddr, paddr, pg_num, pg_shift,
957		NULL, NULL);
958	if (ret < 0 || ret != (int)mp->size)
959		goto fail;
960
961	/* call the object initializers */
962	if (obj_init)
963		rte_mempool_obj_iter(mp, obj_init, obj_init_arg);
964
965	return mp;
966
967 fail:
968	rte_mempool_free(mp);
969	return NULL;
970}
971
972/* Return the number of entries in the mempool */
973unsigned int
974rte_mempool_avail_count(const struct rte_mempool *mp)
975{
976	unsigned count;
977	unsigned lcore_id;
978
979	count = rte_mempool_ops_get_count(mp);
980
981	if (mp->cache_size == 0)
982		return count;
983
984	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
985		count += mp->local_cache[lcore_id].len;
986
987	/*
988	 * due to race condition (access to len is not locked), the
989	 * total can be greater than size... so fix the result
990	 */
991	if (count > mp->size)
992		return mp->size;
993	return count;
994}
995
996/* return the number of entries allocated from the mempool */
997unsigned int
998rte_mempool_in_use_count(const struct rte_mempool *mp)
999{
1000	return mp->size - rte_mempool_avail_count(mp);
1001}
1002
1003unsigned int
1004rte_mempool_count(const struct rte_mempool *mp)
1005{
1006	return rte_mempool_avail_count(mp);
1007}
1008
1009/* dump the cache status */
1010static unsigned
1011rte_mempool_dump_cache(FILE *f, const struct rte_mempool *mp)
1012{
1013	unsigned lcore_id;
1014	unsigned count = 0;
1015	unsigned cache_count;
1016
1017	fprintf(f, "  internal cache infos:\n");
1018	fprintf(f, "    cache_size=%"PRIu32"\n", mp->cache_size);
1019
1020	if (mp->cache_size == 0)
1021		return count;
1022
1023	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1024		cache_count = mp->local_cache[lcore_id].len;
1025		fprintf(f, "    cache_count[%u]=%"PRIu32"\n",
1026			lcore_id, cache_count);
1027		count += cache_count;
1028	}
1029	fprintf(f, "    total_cache_count=%u\n", count);
1030	return count;
1031}
1032
1033#ifndef __INTEL_COMPILER
1034#pragma GCC diagnostic ignored "-Wcast-qual"
1035#endif
1036
1037/* check and update cookies or panic (internal) */
1038void rte_mempool_check_cookies(const struct rte_mempool *mp,
1039	void * const *obj_table_const, unsigned n, int free)
1040{
1041#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1042	struct rte_mempool_objhdr *hdr;
1043	struct rte_mempool_objtlr *tlr;
1044	uint64_t cookie;
1045	void *tmp;
1046	void *obj;
1047	void **obj_table;
1048
1049	/* Force to drop the "const" attribute. This is done only when
1050	 * DEBUG is enabled */
1051	tmp = (void *) obj_table_const;
1052	obj_table = (void **) tmp;
1053
1054	while (n--) {
1055		obj = obj_table[n];
1056
1057		if (rte_mempool_from_obj(obj) != mp)
1058			rte_panic("MEMPOOL: object is owned by another "
1059				  "mempool\n");
1060
1061		hdr = __mempool_get_header(obj);
1062		cookie = hdr->cookie;
1063
1064		if (free == 0) {
1065			if (cookie != RTE_MEMPOOL_HEADER_COOKIE1) {
1066				RTE_LOG(CRIT, MEMPOOL,
1067					"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1068					obj, (const void *) mp, cookie);
1069				rte_panic("MEMPOOL: bad header cookie (put)\n");
1070			}
1071			hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
1072		} else if (free == 1) {
1073			if (cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
1074				RTE_LOG(CRIT, MEMPOOL,
1075					"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1076					obj, (const void *) mp, cookie);
1077				rte_panic("MEMPOOL: bad header cookie (get)\n");
1078			}
1079			hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE1;
1080		} else if (free == 2) {
1081			if (cookie != RTE_MEMPOOL_HEADER_COOKIE1 &&
1082			    cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
1083				RTE_LOG(CRIT, MEMPOOL,
1084					"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1085					obj, (const void *) mp, cookie);
1086				rte_panic("MEMPOOL: bad header cookie (audit)\n");
1087			}
1088		}
1089		tlr = __mempool_get_trailer(obj);
1090		cookie = tlr->cookie;
1091		if (cookie != RTE_MEMPOOL_TRAILER_COOKIE) {
1092			RTE_LOG(CRIT, MEMPOOL,
1093				"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1094				obj, (const void *) mp, cookie);
1095			rte_panic("MEMPOOL: bad trailer cookie\n");
1096		}
1097	}
1098#else
1099	RTE_SET_USED(mp);
1100	RTE_SET_USED(obj_table_const);
1101	RTE_SET_USED(n);
1102	RTE_SET_USED(free);
1103#endif
1104}
1105
1106#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1107static void
1108mempool_obj_audit(struct rte_mempool *mp, __rte_unused void *opaque,
1109	void *obj, __rte_unused unsigned idx)
1110{
1111	__mempool_check_cookies(mp, &obj, 1, 2);
1112}
1113
1114static void
1115mempool_audit_cookies(struct rte_mempool *mp)
1116{
1117	unsigned num;
1118
1119	num = rte_mempool_obj_iter(mp, mempool_obj_audit, NULL);
1120	if (num != mp->size) {
1121		rte_panic("rte_mempool_obj_iter(mempool=%p, size=%u) "
1122			"iterated only over %u elements\n",
1123			mp, mp->size, num);
1124	}
1125}
1126#else
1127#define mempool_audit_cookies(mp) do {} while(0)
1128#endif
1129
1130#ifndef __INTEL_COMPILER
1131#pragma GCC diagnostic error "-Wcast-qual"
1132#endif
1133
1134/* check cookies before and after objects */
1135static void
1136mempool_audit_cache(const struct rte_mempool *mp)
1137{
1138	/* check cache size consistency */
1139	unsigned lcore_id;
1140
1141	if (mp->cache_size == 0)
1142		return;
1143
1144	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1145		const struct rte_mempool_cache *cache;
1146		cache = &mp->local_cache[lcore_id];
1147		if (cache->len > cache->flushthresh) {
1148			RTE_LOG(CRIT, MEMPOOL, "badness on cache[%u]\n",
1149				lcore_id);
1150			rte_panic("MEMPOOL: invalid cache len\n");
1151		}
1152	}
1153}
1154
1155/* check the consistency of mempool (size, cookies, ...) */
1156void
1157rte_mempool_audit(struct rte_mempool *mp)
1158{
1159	mempool_audit_cache(mp);
1160	mempool_audit_cookies(mp);
1161
1162	/* For case where mempool DEBUG is not set, and cache size is 0 */
1163	RTE_SET_USED(mp);
1164}
1165
1166/* dump the status of the mempool on the console */
1167void
1168rte_mempool_dump(FILE *f, struct rte_mempool *mp)
1169{
1170#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1171	struct rte_mempool_debug_stats sum;
1172	unsigned lcore_id;
1173#endif
1174	struct rte_mempool_memhdr *memhdr;
1175	unsigned common_count;
1176	unsigned cache_count;
1177	size_t mem_len = 0;
1178
1179	RTE_ASSERT(f != NULL);
1180	RTE_ASSERT(mp != NULL);
1181
1182	fprintf(f, "mempool <%s>@%p\n", mp->name, mp);
1183	fprintf(f, "  flags=%x\n", mp->flags);
1184	fprintf(f, "  pool=%p\n", mp->pool_data);
1185	fprintf(f, "  phys_addr=0x%" PRIx64 "\n", mp->mz->phys_addr);
1186	fprintf(f, "  nb_mem_chunks=%u\n", mp->nb_mem_chunks);
1187	fprintf(f, "  size=%"PRIu32"\n", mp->size);
1188	fprintf(f, "  populated_size=%"PRIu32"\n", mp->populated_size);
1189	fprintf(f, "  header_size=%"PRIu32"\n", mp->header_size);
1190	fprintf(f, "  elt_size=%"PRIu32"\n", mp->elt_size);
1191	fprintf(f, "  trailer_size=%"PRIu32"\n", mp->trailer_size);
1192	fprintf(f, "  total_obj_size=%"PRIu32"\n",
1193	       mp->header_size + mp->elt_size + mp->trailer_size);
1194
1195	fprintf(f, "  private_data_size=%"PRIu32"\n", mp->private_data_size);
1196
1197	STAILQ_FOREACH(memhdr, &mp->mem_list, next)
1198		mem_len += memhdr->len;
1199	if (mem_len != 0) {
1200		fprintf(f, "  avg bytes/object=%#Lf\n",
1201			(long double)mem_len / mp->size);
1202	}
1203
1204	cache_count = rte_mempool_dump_cache(f, mp);
1205	common_count = rte_mempool_ops_get_count(mp);
1206	if ((cache_count + common_count) > mp->size)
1207		common_count = mp->size - cache_count;
1208	fprintf(f, "  common_pool_count=%u\n", common_count);
1209
1210	/* sum and dump statistics */
1211#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1212	memset(&sum, 0, sizeof(sum));
1213	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1214		sum.put_bulk += mp->stats[lcore_id].put_bulk;
1215		sum.put_objs += mp->stats[lcore_id].put_objs;
1216		sum.get_success_bulk += mp->stats[lcore_id].get_success_bulk;
1217		sum.get_success_objs += mp->stats[lcore_id].get_success_objs;
1218		sum.get_fail_bulk += mp->stats[lcore_id].get_fail_bulk;
1219		sum.get_fail_objs += mp->stats[lcore_id].get_fail_objs;
1220	}
1221	fprintf(f, "  stats:\n");
1222	fprintf(f, "    put_bulk=%"PRIu64"\n", sum.put_bulk);
1223	fprintf(f, "    put_objs=%"PRIu64"\n", sum.put_objs);
1224	fprintf(f, "    get_success_bulk=%"PRIu64"\n", sum.get_success_bulk);
1225	fprintf(f, "    get_success_objs=%"PRIu64"\n", sum.get_success_objs);
1226	fprintf(f, "    get_fail_bulk=%"PRIu64"\n", sum.get_fail_bulk);
1227	fprintf(f, "    get_fail_objs=%"PRIu64"\n", sum.get_fail_objs);
1228#else
1229	fprintf(f, "  no statistics available\n");
1230#endif
1231
1232	rte_mempool_audit(mp);
1233}
1234
1235/* dump the status of all mempools on the console */
1236void
1237rte_mempool_list_dump(FILE *f)
1238{
1239	struct rte_mempool *mp = NULL;
1240	struct rte_tailq_entry *te;
1241	struct rte_mempool_list *mempool_list;
1242
1243	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1244
1245	rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
1246
1247	TAILQ_FOREACH(te, mempool_list, next) {
1248		mp = (struct rte_mempool *) te->data;
1249		rte_mempool_dump(f, mp);
1250	}
1251
1252	rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
1253}
1254
1255/* search a mempool from its name */
1256struct rte_mempool *
1257rte_mempool_lookup(const char *name)
1258{
1259	struct rte_mempool *mp = NULL;
1260	struct rte_tailq_entry *te;
1261	struct rte_mempool_list *mempool_list;
1262
1263	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1264
1265	rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
1266
1267	TAILQ_FOREACH(te, mempool_list, next) {
1268		mp = (struct rte_mempool *) te->data;
1269		if (strncmp(name, mp->name, RTE_MEMPOOL_NAMESIZE) == 0)
1270			break;
1271	}
1272
1273	rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
1274
1275	if (te == NULL) {
1276		rte_errno = ENOENT;
1277		return NULL;
1278	}
1279
1280	return mp;
1281}
1282
1283void rte_mempool_walk(void (*func)(struct rte_mempool *, void *),
1284		      void *arg)
1285{
1286	struct rte_tailq_entry *te = NULL;
1287	struct rte_mempool_list *mempool_list;
1288	void *tmp_te;
1289
1290	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1291
1292	rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
1293
1294	TAILQ_FOREACH_SAFE(te, mempool_list, next, tmp_te) {
1295		(*func)((struct rte_mempool *) te->data, arg);
1296	}
1297
1298	rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
1299}
1300