1/*******************************************************************************
2
3Copyright (c) 2001-2015, Intel Corporation
4All rights reserved.
5
6Redistribution and use in source and binary forms, with or without
7modification, are permitted provided that the following conditions are met:
8
9 1. Redistributions of source code must retain the above copyright notice,
10    this list of conditions and the following disclaimer.
11
12 2. Redistributions in binary form must reproduce the above copyright
13    notice, this list of conditions and the following disclaimer in the
14    documentation and/or other materials provided with the distribution.
15
16 3. Neither the name of the Intel Corporation nor the names of its
17    contributors may be used to endorse or promote products derived from
18    this software without specific prior written permission.
19
20THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30POSSIBILITY OF SUCH DAMAGE.
31
32***************************************************************************/
33
34#include "e1000_api.h"
35
36/**
37 *  e1000_init_mac_params - Initialize MAC function pointers
38 *  @hw: pointer to the HW structure
39 *
40 *  This function initializes the function pointers for the MAC
41 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
42 **/
43s32 e1000_init_mac_params(struct e1000_hw *hw)
44{
45	s32 ret_val = E1000_SUCCESS;
46
47	if (hw->mac.ops.init_params) {
48		ret_val = hw->mac.ops.init_params(hw);
49		if (ret_val) {
50			DEBUGOUT("MAC Initialization Error\n");
51			goto out;
52		}
53	} else {
54		DEBUGOUT("mac.init_mac_params was NULL\n");
55		ret_val = -E1000_ERR_CONFIG;
56	}
57
58out:
59	return ret_val;
60}
61
62/**
63 *  e1000_init_nvm_params - Initialize NVM function pointers
64 *  @hw: pointer to the HW structure
65 *
66 *  This function initializes the function pointers for the NVM
67 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
68 **/
69s32 e1000_init_nvm_params(struct e1000_hw *hw)
70{
71	s32 ret_val = E1000_SUCCESS;
72
73	if (hw->nvm.ops.init_params) {
74		ret_val = hw->nvm.ops.init_params(hw);
75		if (ret_val) {
76			DEBUGOUT("NVM Initialization Error\n");
77			goto out;
78		}
79	} else {
80		DEBUGOUT("nvm.init_nvm_params was NULL\n");
81		ret_val = -E1000_ERR_CONFIG;
82	}
83
84out:
85	return ret_val;
86}
87
88/**
89 *  e1000_init_phy_params - Initialize PHY function pointers
90 *  @hw: pointer to the HW structure
91 *
92 *  This function initializes the function pointers for the PHY
93 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
94 **/
95s32 e1000_init_phy_params(struct e1000_hw *hw)
96{
97	s32 ret_val = E1000_SUCCESS;
98
99	if (hw->phy.ops.init_params) {
100		ret_val = hw->phy.ops.init_params(hw);
101		if (ret_val) {
102			DEBUGOUT("PHY Initialization Error\n");
103			goto out;
104		}
105	} else {
106		DEBUGOUT("phy.init_phy_params was NULL\n");
107		ret_val =  -E1000_ERR_CONFIG;
108	}
109
110out:
111	return ret_val;
112}
113
114/**
115 *  e1000_init_mbx_params - Initialize mailbox function pointers
116 *  @hw: pointer to the HW structure
117 *
118 *  This function initializes the function pointers for the PHY
119 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
120 **/
121s32 e1000_init_mbx_params(struct e1000_hw *hw)
122{
123	s32 ret_val = E1000_SUCCESS;
124
125	if (hw->mbx.ops.init_params) {
126		ret_val = hw->mbx.ops.init_params(hw);
127		if (ret_val) {
128			DEBUGOUT("Mailbox Initialization Error\n");
129			goto out;
130		}
131	} else {
132		DEBUGOUT("mbx.init_mbx_params was NULL\n");
133		ret_val =  -E1000_ERR_CONFIG;
134	}
135
136out:
137	return ret_val;
138}
139
140/**
141 *  e1000_set_mac_type - Sets MAC type
142 *  @hw: pointer to the HW structure
143 *
144 *  This function sets the mac type of the adapter based on the
145 *  device ID stored in the hw structure.
146 *  MUST BE FIRST FUNCTION CALLED (explicitly or through
147 *  e1000_setup_init_funcs()).
148 **/
149s32 e1000_set_mac_type(struct e1000_hw *hw)
150{
151	struct e1000_mac_info *mac = &hw->mac;
152	s32 ret_val = E1000_SUCCESS;
153
154	DEBUGFUNC("e1000_set_mac_type");
155
156	switch (hw->device_id) {
157	case E1000_DEV_ID_82542:
158		mac->type = e1000_82542;
159		break;
160	case E1000_DEV_ID_82543GC_FIBER:
161	case E1000_DEV_ID_82543GC_COPPER:
162		mac->type = e1000_82543;
163		break;
164	case E1000_DEV_ID_82544EI_COPPER:
165	case E1000_DEV_ID_82544EI_FIBER:
166	case E1000_DEV_ID_82544GC_COPPER:
167	case E1000_DEV_ID_82544GC_LOM:
168		mac->type = e1000_82544;
169		break;
170	case E1000_DEV_ID_82540EM:
171	case E1000_DEV_ID_82540EM_LOM:
172	case E1000_DEV_ID_82540EP:
173	case E1000_DEV_ID_82540EP_LOM:
174	case E1000_DEV_ID_82540EP_LP:
175		mac->type = e1000_82540;
176		break;
177	case E1000_DEV_ID_82545EM_COPPER:
178	case E1000_DEV_ID_82545EM_FIBER:
179		mac->type = e1000_82545;
180		break;
181	case E1000_DEV_ID_82545GM_COPPER:
182	case E1000_DEV_ID_82545GM_FIBER:
183	case E1000_DEV_ID_82545GM_SERDES:
184		mac->type = e1000_82545_rev_3;
185		break;
186	case E1000_DEV_ID_82546EB_COPPER:
187	case E1000_DEV_ID_82546EB_FIBER:
188	case E1000_DEV_ID_82546EB_QUAD_COPPER:
189		mac->type = e1000_82546;
190		break;
191	case E1000_DEV_ID_82546GB_COPPER:
192	case E1000_DEV_ID_82546GB_FIBER:
193	case E1000_DEV_ID_82546GB_SERDES:
194	case E1000_DEV_ID_82546GB_PCIE:
195	case E1000_DEV_ID_82546GB_QUAD_COPPER:
196	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
197		mac->type = e1000_82546_rev_3;
198		break;
199	case E1000_DEV_ID_82541EI:
200	case E1000_DEV_ID_82541EI_MOBILE:
201	case E1000_DEV_ID_82541ER_LOM:
202		mac->type = e1000_82541;
203		break;
204	case E1000_DEV_ID_82541ER:
205	case E1000_DEV_ID_82541GI:
206	case E1000_DEV_ID_82541GI_LF:
207	case E1000_DEV_ID_82541GI_MOBILE:
208		mac->type = e1000_82541_rev_2;
209		break;
210	case E1000_DEV_ID_82547EI:
211	case E1000_DEV_ID_82547EI_MOBILE:
212		mac->type = e1000_82547;
213		break;
214	case E1000_DEV_ID_82547GI:
215		mac->type = e1000_82547_rev_2;
216		break;
217	case E1000_DEV_ID_82571EB_COPPER:
218	case E1000_DEV_ID_82571EB_FIBER:
219	case E1000_DEV_ID_82571EB_SERDES:
220	case E1000_DEV_ID_82571EB_SERDES_DUAL:
221	case E1000_DEV_ID_82571EB_SERDES_QUAD:
222	case E1000_DEV_ID_82571EB_QUAD_COPPER:
223	case E1000_DEV_ID_82571PT_QUAD_COPPER:
224	case E1000_DEV_ID_82571EB_QUAD_FIBER:
225	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
226		mac->type = e1000_82571;
227		break;
228	case E1000_DEV_ID_82572EI:
229	case E1000_DEV_ID_82572EI_COPPER:
230	case E1000_DEV_ID_82572EI_FIBER:
231	case E1000_DEV_ID_82572EI_SERDES:
232		mac->type = e1000_82572;
233		break;
234	case E1000_DEV_ID_82573E:
235	case E1000_DEV_ID_82573E_IAMT:
236	case E1000_DEV_ID_82573L:
237		mac->type = e1000_82573;
238		break;
239	case E1000_DEV_ID_82574L:
240	case E1000_DEV_ID_82574LA:
241		mac->type = e1000_82574;
242		break;
243	case E1000_DEV_ID_82583V:
244		mac->type = e1000_82583;
245		break;
246	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
247	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
248	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
249	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
250		mac->type = e1000_80003es2lan;
251		break;
252	case E1000_DEV_ID_ICH8_IFE:
253	case E1000_DEV_ID_ICH8_IFE_GT:
254	case E1000_DEV_ID_ICH8_IFE_G:
255	case E1000_DEV_ID_ICH8_IGP_M:
256	case E1000_DEV_ID_ICH8_IGP_M_AMT:
257	case E1000_DEV_ID_ICH8_IGP_AMT:
258	case E1000_DEV_ID_ICH8_IGP_C:
259	case E1000_DEV_ID_ICH8_82567V_3:
260		mac->type = e1000_ich8lan;
261		break;
262	case E1000_DEV_ID_ICH9_IFE:
263	case E1000_DEV_ID_ICH9_IFE_GT:
264	case E1000_DEV_ID_ICH9_IFE_G:
265	case E1000_DEV_ID_ICH9_IGP_M:
266	case E1000_DEV_ID_ICH9_IGP_M_AMT:
267	case E1000_DEV_ID_ICH9_IGP_M_V:
268	case E1000_DEV_ID_ICH9_IGP_AMT:
269	case E1000_DEV_ID_ICH9_BM:
270	case E1000_DEV_ID_ICH9_IGP_C:
271	case E1000_DEV_ID_ICH10_R_BM_LM:
272	case E1000_DEV_ID_ICH10_R_BM_LF:
273	case E1000_DEV_ID_ICH10_R_BM_V:
274		mac->type = e1000_ich9lan;
275		break;
276	case E1000_DEV_ID_ICH10_D_BM_LM:
277	case E1000_DEV_ID_ICH10_D_BM_LF:
278	case E1000_DEV_ID_ICH10_D_BM_V:
279		mac->type = e1000_ich10lan;
280		break;
281	case E1000_DEV_ID_PCH_D_HV_DM:
282	case E1000_DEV_ID_PCH_D_HV_DC:
283	case E1000_DEV_ID_PCH_M_HV_LM:
284	case E1000_DEV_ID_PCH_M_HV_LC:
285		mac->type = e1000_pchlan;
286		break;
287	case E1000_DEV_ID_PCH2_LV_LM:
288	case E1000_DEV_ID_PCH2_LV_V:
289		mac->type = e1000_pch2lan;
290		break;
291	case E1000_DEV_ID_PCH_LPT_I217_LM:
292	case E1000_DEV_ID_PCH_LPT_I217_V:
293	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
294	case E1000_DEV_ID_PCH_LPTLP_I218_V:
295	case E1000_DEV_ID_PCH_I218_LM2:
296	case E1000_DEV_ID_PCH_I218_V2:
297	case E1000_DEV_ID_PCH_I218_LM3:
298	case E1000_DEV_ID_PCH_I218_V3:
299		mac->type = e1000_pch_lpt;
300		break;
301	case E1000_DEV_ID_PCH_SPT_I219_LM:
302	case E1000_DEV_ID_PCH_SPT_I219_V:
303	case E1000_DEV_ID_PCH_SPT_I219_LM2:
304	case E1000_DEV_ID_PCH_SPT_I219_V2:
305	case E1000_DEV_ID_PCH_LBG_I219_LM3:
306	case E1000_DEV_ID_PCH_SPT_I219_LM4:
307	case E1000_DEV_ID_PCH_SPT_I219_V4:
308	case E1000_DEV_ID_PCH_SPT_I219_LM5:
309	case E1000_DEV_ID_PCH_SPT_I219_V5:
310		mac->type = e1000_pch_spt;
311		break;
312	case E1000_DEV_ID_PCH_CNP_I219_LM6:
313	case E1000_DEV_ID_PCH_CNP_I219_V6:
314	case E1000_DEV_ID_PCH_CNP_I219_LM7:
315	case E1000_DEV_ID_PCH_CNP_I219_V7:
316		mac->type = e1000_pch_cnp;
317		break;
318	case E1000_DEV_ID_82575EB_COPPER:
319	case E1000_DEV_ID_82575EB_FIBER_SERDES:
320	case E1000_DEV_ID_82575GB_QUAD_COPPER:
321		mac->type = e1000_82575;
322		break;
323	case E1000_DEV_ID_82576:
324	case E1000_DEV_ID_82576_FIBER:
325	case E1000_DEV_ID_82576_SERDES:
326	case E1000_DEV_ID_82576_QUAD_COPPER:
327	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
328	case E1000_DEV_ID_82576_NS:
329	case E1000_DEV_ID_82576_NS_SERDES:
330	case E1000_DEV_ID_82576_SERDES_QUAD:
331		mac->type = e1000_82576;
332		break;
333	case E1000_DEV_ID_82580_COPPER:
334	case E1000_DEV_ID_82580_FIBER:
335	case E1000_DEV_ID_82580_SERDES:
336	case E1000_DEV_ID_82580_SGMII:
337	case E1000_DEV_ID_82580_COPPER_DUAL:
338	case E1000_DEV_ID_82580_QUAD_FIBER:
339	case E1000_DEV_ID_DH89XXCC_SGMII:
340	case E1000_DEV_ID_DH89XXCC_SERDES:
341	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
342	case E1000_DEV_ID_DH89XXCC_SFP:
343		mac->type = e1000_82580;
344		break;
345	case E1000_DEV_ID_I350_COPPER:
346	case E1000_DEV_ID_I350_FIBER:
347	case E1000_DEV_ID_I350_SERDES:
348	case E1000_DEV_ID_I350_SGMII:
349	case E1000_DEV_ID_I350_DA4:
350		mac->type = e1000_i350;
351		break;
352	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
353	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
354	case E1000_DEV_ID_I210_COPPER:
355	case E1000_DEV_ID_I210_COPPER_OEM1:
356	case E1000_DEV_ID_I210_COPPER_IT:
357	case E1000_DEV_ID_I210_FIBER:
358	case E1000_DEV_ID_I210_SERDES:
359	case E1000_DEV_ID_I210_SGMII:
360		mac->type = e1000_i210;
361		break;
362	case E1000_DEV_ID_I211_COPPER:
363		mac->type = e1000_i211;
364		break;
365	case E1000_DEV_ID_82576_VF:
366	case E1000_DEV_ID_82576_VF_HV:
367		mac->type = e1000_vfadapt;
368		break;
369	case E1000_DEV_ID_I350_VF:
370	case E1000_DEV_ID_I350_VF_HV:
371		mac->type = e1000_vfadapt_i350;
372		break;
373
374	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
375	case E1000_DEV_ID_I354_SGMII:
376	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
377		mac->type = e1000_i354;
378		break;
379	default:
380		/* Should never have loaded on this device */
381		ret_val = -E1000_ERR_MAC_INIT;
382		break;
383	}
384
385	return ret_val;
386}
387
388/**
389 *  e1000_setup_init_funcs - Initializes function pointers
390 *  @hw: pointer to the HW structure
391 *  @init_device: true will initialize the rest of the function pointers
392 *		  getting the device ready for use.  false will only set
393 *		  MAC type and the function pointers for the other init
394 *		  functions.  Passing false will not generate any hardware
395 *		  reads or writes.
396 *
397 *  This function must be called by a driver in order to use the rest
398 *  of the 'shared' code files. Called by drivers only.
399 **/
400s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
401{
402	s32 ret_val;
403
404	/* Can't do much good without knowing the MAC type. */
405	ret_val = e1000_set_mac_type(hw);
406	if (ret_val) {
407		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
408		goto out;
409	}
410
411	if (!hw->hw_addr) {
412		DEBUGOUT("ERROR: Registers not mapped\n");
413		ret_val = -E1000_ERR_CONFIG;
414		goto out;
415	}
416
417	/*
418	 * Init function pointers to generic implementations. We do this first
419	 * allowing a driver module to override it afterward.
420	 */
421	e1000_init_mac_ops_generic(hw);
422	e1000_init_phy_ops_generic(hw);
423	e1000_init_nvm_ops_generic(hw);
424	e1000_init_mbx_ops_generic(hw);
425
426	/*
427	 * Set up the init function pointers. These are functions within the
428	 * adapter family file that sets up function pointers for the rest of
429	 * the functions in that family.
430	 */
431	switch (hw->mac.type) {
432	case e1000_82542:
433		e1000_init_function_pointers_82542(hw);
434		break;
435	case e1000_82543:
436	case e1000_82544:
437		e1000_init_function_pointers_82543(hw);
438		break;
439	case e1000_82540:
440	case e1000_82545:
441	case e1000_82545_rev_3:
442	case e1000_82546:
443	case e1000_82546_rev_3:
444		e1000_init_function_pointers_82540(hw);
445		break;
446	case e1000_82541:
447	case e1000_82541_rev_2:
448	case e1000_82547:
449	case e1000_82547_rev_2:
450		e1000_init_function_pointers_82541(hw);
451		break;
452	case e1000_82571:
453	case e1000_82572:
454	case e1000_82573:
455	case e1000_82574:
456	case e1000_82583:
457		e1000_init_function_pointers_82571(hw);
458		break;
459	case e1000_80003es2lan:
460		e1000_init_function_pointers_80003es2lan(hw);
461		break;
462	case e1000_ich8lan:
463	case e1000_ich9lan:
464	case e1000_ich10lan:
465	case e1000_pchlan:
466	case e1000_pch2lan:
467	case e1000_pch_lpt:
468	case e1000_pch_spt:
469	case e1000_pch_cnp:
470		e1000_init_function_pointers_ich8lan(hw);
471		break;
472	case e1000_82575:
473	case e1000_82576:
474	case e1000_82580:
475	case e1000_i350:
476	case e1000_i354:
477		e1000_init_function_pointers_82575(hw);
478		break;
479	case e1000_i210:
480	case e1000_i211:
481		e1000_init_function_pointers_i210(hw);
482		break;
483	case e1000_vfadapt:
484		e1000_init_function_pointers_vf(hw);
485		break;
486	case e1000_vfadapt_i350:
487		e1000_init_function_pointers_vf(hw);
488		break;
489	default:
490		DEBUGOUT("Hardware not supported\n");
491		ret_val = -E1000_ERR_CONFIG;
492		break;
493	}
494
495	/*
496	 * Initialize the rest of the function pointers. These require some
497	 * register reads/writes in some cases.
498	 */
499	if (!(ret_val) && init_device) {
500		ret_val = e1000_init_mac_params(hw);
501		if (ret_val)
502			goto out;
503
504		ret_val = e1000_init_nvm_params(hw);
505		if (ret_val)
506			goto out;
507
508		ret_val = e1000_init_phy_params(hw);
509		if (ret_val)
510			goto out;
511
512		ret_val = e1000_init_mbx_params(hw);
513		if (ret_val)
514			goto out;
515	}
516
517out:
518	return ret_val;
519}
520
521/**
522 *  e1000_get_bus_info - Obtain bus information for adapter
523 *  @hw: pointer to the HW structure
524 *
525 *  This will obtain information about the HW bus for which the
526 *  adapter is attached and stores it in the hw structure. This is a
527 *  function pointer entry point called by drivers.
528 **/
529s32 e1000_get_bus_info(struct e1000_hw *hw)
530{
531	if (hw->mac.ops.get_bus_info)
532		return hw->mac.ops.get_bus_info(hw);
533
534	return E1000_SUCCESS;
535}
536
537/**
538 *  e1000_clear_vfta - Clear VLAN filter table
539 *  @hw: pointer to the HW structure
540 *
541 *  This clears the VLAN filter table on the adapter. This is a function
542 *  pointer entry point called by drivers.
543 **/
544void e1000_clear_vfta(struct e1000_hw *hw)
545{
546	if (hw->mac.ops.clear_vfta)
547		hw->mac.ops.clear_vfta(hw);
548}
549
550/**
551 *  e1000_write_vfta - Write value to VLAN filter table
552 *  @hw: pointer to the HW structure
553 *  @offset: the 32-bit offset in which to write the value to.
554 *  @value: the 32-bit value to write at location offset.
555 *
556 *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
557 *  table. This is a function pointer entry point called by drivers.
558 **/
559void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
560{
561	if (hw->mac.ops.write_vfta)
562		hw->mac.ops.write_vfta(hw, offset, value);
563}
564
565/**
566 *  e1000_update_mc_addr_list - Update Multicast addresses
567 *  @hw: pointer to the HW structure
568 *  @mc_addr_list: array of multicast addresses to program
569 *  @mc_addr_count: number of multicast addresses to program
570 *
571 *  Updates the Multicast Table Array.
572 *  The caller must have a packed mc_addr_list of multicast addresses.
573 **/
574void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
575			       u32 mc_addr_count)
576{
577	if (hw->mac.ops.update_mc_addr_list)
578		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
579						mc_addr_count);
580}
581
582/**
583 *  e1000_force_mac_fc - Force MAC flow control
584 *  @hw: pointer to the HW structure
585 *
586 *  Force the MAC's flow control settings. Currently no func pointer exists
587 *  and all implementations are handled in the generic version of this
588 *  function.
589 **/
590s32 e1000_force_mac_fc(struct e1000_hw *hw)
591{
592	return e1000_force_mac_fc_generic(hw);
593}
594
595/**
596 *  e1000_check_for_link - Check/Store link connection
597 *  @hw: pointer to the HW structure
598 *
599 *  This checks the link condition of the adapter and stores the
600 *  results in the hw->mac structure. This is a function pointer entry
601 *  point called by drivers.
602 **/
603s32 e1000_check_for_link(struct e1000_hw *hw)
604{
605	if (hw->mac.ops.check_for_link)
606		return hw->mac.ops.check_for_link(hw);
607
608	return -E1000_ERR_CONFIG;
609}
610
611/**
612 *  e1000_check_mng_mode - Check management mode
613 *  @hw: pointer to the HW structure
614 *
615 *  This checks if the adapter has manageability enabled.
616 *  This is a function pointer entry point called by drivers.
617 **/
618bool e1000_check_mng_mode(struct e1000_hw *hw)
619{
620	if (hw->mac.ops.check_mng_mode)
621		return hw->mac.ops.check_mng_mode(hw);
622
623	return false;
624}
625
626/**
627 *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
628 *  @hw: pointer to the HW structure
629 *  @buffer: pointer to the host interface
630 *  @length: size of the buffer
631 *
632 *  Writes the DHCP information to the host interface.
633 **/
634s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
635{
636	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
637}
638
639/**
640 *  e1000_reset_hw - Reset hardware
641 *  @hw: pointer to the HW structure
642 *
643 *  This resets the hardware into a known state. This is a function pointer
644 *  entry point called by drivers.
645 **/
646s32 e1000_reset_hw(struct e1000_hw *hw)
647{
648	if (hw->mac.ops.reset_hw)
649		return hw->mac.ops.reset_hw(hw);
650
651	return -E1000_ERR_CONFIG;
652}
653
654/**
655 *  e1000_init_hw - Initialize hardware
656 *  @hw: pointer to the HW structure
657 *
658 *  This inits the hardware readying it for operation. This is a function
659 *  pointer entry point called by drivers.
660 **/
661s32 e1000_init_hw(struct e1000_hw *hw)
662{
663	if (hw->mac.ops.init_hw)
664		return hw->mac.ops.init_hw(hw);
665
666	return -E1000_ERR_CONFIG;
667}
668
669/**
670 *  e1000_setup_link - Configures link and flow control
671 *  @hw: pointer to the HW structure
672 *
673 *  This configures link and flow control settings for the adapter. This
674 *  is a function pointer entry point called by drivers. While modules can
675 *  also call this, they probably call their own version of this function.
676 **/
677s32 e1000_setup_link(struct e1000_hw *hw)
678{
679	if (hw->mac.ops.setup_link)
680		return hw->mac.ops.setup_link(hw);
681
682	return -E1000_ERR_CONFIG;
683}
684
685/**
686 *  e1000_get_speed_and_duplex - Returns current speed and duplex
687 *  @hw: pointer to the HW structure
688 *  @speed: pointer to a 16-bit value to store the speed
689 *  @duplex: pointer to a 16-bit value to store the duplex.
690 *
691 *  This returns the speed and duplex of the adapter in the two 'out'
692 *  variables passed in. This is a function pointer entry point called
693 *  by drivers.
694 **/
695s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
696{
697	if (hw->mac.ops.get_link_up_info)
698		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
699
700	return -E1000_ERR_CONFIG;
701}
702
703/**
704 *  e1000_setup_led - Configures SW controllable LED
705 *  @hw: pointer to the HW structure
706 *
707 *  This prepares the SW controllable LED for use and saves the current state
708 *  of the LED so it can be later restored. This is a function pointer entry
709 *  point called by drivers.
710 **/
711s32 e1000_setup_led(struct e1000_hw *hw)
712{
713	if (hw->mac.ops.setup_led)
714		return hw->mac.ops.setup_led(hw);
715
716	return E1000_SUCCESS;
717}
718
719/**
720 *  e1000_cleanup_led - Restores SW controllable LED
721 *  @hw: pointer to the HW structure
722 *
723 *  This restores the SW controllable LED to the value saved off by
724 *  e1000_setup_led. This is a function pointer entry point called by drivers.
725 **/
726s32 e1000_cleanup_led(struct e1000_hw *hw)
727{
728	if (hw->mac.ops.cleanup_led)
729		return hw->mac.ops.cleanup_led(hw);
730
731	return E1000_SUCCESS;
732}
733
734/**
735 *  e1000_blink_led - Blink SW controllable LED
736 *  @hw: pointer to the HW structure
737 *
738 *  This starts the adapter LED blinking. Request the LED to be setup first
739 *  and cleaned up after. This is a function pointer entry point called by
740 *  drivers.
741 **/
742s32 e1000_blink_led(struct e1000_hw *hw)
743{
744	if (hw->mac.ops.blink_led)
745		return hw->mac.ops.blink_led(hw);
746
747	return E1000_SUCCESS;
748}
749
750/**
751 *  e1000_id_led_init - store LED configurations in SW
752 *  @hw: pointer to the HW structure
753 *
754 *  Initializes the LED config in SW. This is a function pointer entry point
755 *  called by drivers.
756 **/
757s32 e1000_id_led_init(struct e1000_hw *hw)
758{
759	if (hw->mac.ops.id_led_init)
760		return hw->mac.ops.id_led_init(hw);
761
762	return E1000_SUCCESS;
763}
764
765/**
766 *  e1000_led_on - Turn on SW controllable LED
767 *  @hw: pointer to the HW structure
768 *
769 *  Turns the SW defined LED on. This is a function pointer entry point
770 *  called by drivers.
771 **/
772s32 e1000_led_on(struct e1000_hw *hw)
773{
774	if (hw->mac.ops.led_on)
775		return hw->mac.ops.led_on(hw);
776
777	return E1000_SUCCESS;
778}
779
780/**
781 *  e1000_led_off - Turn off SW controllable LED
782 *  @hw: pointer to the HW structure
783 *
784 *  Turns the SW defined LED off. This is a function pointer entry point
785 *  called by drivers.
786 **/
787s32 e1000_led_off(struct e1000_hw *hw)
788{
789	if (hw->mac.ops.led_off)
790		return hw->mac.ops.led_off(hw);
791
792	return E1000_SUCCESS;
793}
794
795/**
796 *  e1000_reset_adaptive - Reset adaptive IFS
797 *  @hw: pointer to the HW structure
798 *
799 *  Resets the adaptive IFS. Currently no func pointer exists and all
800 *  implementations are handled in the generic version of this function.
801 **/
802void e1000_reset_adaptive(struct e1000_hw *hw)
803{
804	e1000_reset_adaptive_generic(hw);
805}
806
807/**
808 *  e1000_update_adaptive - Update adaptive IFS
809 *  @hw: pointer to the HW structure
810 *
811 *  Updates adapter IFS. Currently no func pointer exists and all
812 *  implementations are handled in the generic version of this function.
813 **/
814void e1000_update_adaptive(struct e1000_hw *hw)
815{
816	e1000_update_adaptive_generic(hw);
817}
818
819/**
820 *  e1000_disable_pcie_master - Disable PCI-Express master access
821 *  @hw: pointer to the HW structure
822 *
823 *  Disables PCI-Express master access and verifies there are no pending
824 *  requests. Currently no func pointer exists and all implementations are
825 *  handled in the generic version of this function.
826 **/
827s32 e1000_disable_pcie_master(struct e1000_hw *hw)
828{
829	return e1000_disable_pcie_master_generic(hw);
830}
831
832/**
833 *  e1000_config_collision_dist - Configure collision distance
834 *  @hw: pointer to the HW structure
835 *
836 *  Configures the collision distance to the default value and is used
837 *  during link setup.
838 **/
839void e1000_config_collision_dist(struct e1000_hw *hw)
840{
841	if (hw->mac.ops.config_collision_dist)
842		hw->mac.ops.config_collision_dist(hw);
843}
844
845/**
846 *  e1000_rar_set - Sets a receive address register
847 *  @hw: pointer to the HW structure
848 *  @addr: address to set the RAR to
849 *  @index: the RAR to set
850 *
851 *  Sets a Receive Address Register (RAR) to the specified address.
852 **/
853int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
854{
855	if (hw->mac.ops.rar_set)
856		return hw->mac.ops.rar_set(hw, addr, index);
857
858	return E1000_SUCCESS;
859}
860
861/**
862 *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
863 *  @hw: pointer to the HW structure
864 *
865 *  Ensures that the MDI/MDIX SW state is valid.
866 **/
867s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
868{
869	if (hw->mac.ops.validate_mdi_setting)
870		return hw->mac.ops.validate_mdi_setting(hw);
871
872	return E1000_SUCCESS;
873}
874
875/**
876 *  e1000_hash_mc_addr - Determines address location in multicast table
877 *  @hw: pointer to the HW structure
878 *  @mc_addr: Multicast address to hash.
879 *
880 *  This hashes an address to determine its location in the multicast
881 *  table. Currently no func pointer exists and all implementations
882 *  are handled in the generic version of this function.
883 **/
884u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
885{
886	return e1000_hash_mc_addr_generic(hw, mc_addr);
887}
888
889/**
890 *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
891 *  @hw: pointer to the HW structure
892 *
893 *  Enables packet filtering on transmit packets if manageability is enabled
894 *  and host interface is enabled.
895 *  Currently no func pointer exists and all implementations are handled in the
896 *  generic version of this function.
897 **/
898bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
899{
900	return e1000_enable_tx_pkt_filtering_generic(hw);
901}
902
903/**
904 *  e1000_mng_host_if_write - Writes to the manageability host interface
905 *  @hw: pointer to the HW structure
906 *  @buffer: pointer to the host interface buffer
907 *  @length: size of the buffer
908 *  @offset: location in the buffer to write to
909 *  @sum: sum of the data (not checksum)
910 *
911 *  This function writes the buffer content at the offset given on the host if.
912 *  It also does alignment considerations to do the writes in most efficient
913 *  way.  Also fills up the sum of the buffer in *buffer parameter.
914 **/
915s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
916			    u16 offset, u8 *sum)
917{
918	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
919}
920
921/**
922 *  e1000_mng_write_cmd_header - Writes manageability command header
923 *  @hw: pointer to the HW structure
924 *  @hdr: pointer to the host interface command header
925 *
926 *  Writes the command header after does the checksum calculation.
927 **/
928s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
929			       struct e1000_host_mng_command_header *hdr)
930{
931	return e1000_mng_write_cmd_header_generic(hw, hdr);
932}
933
934/**
935 *  e1000_mng_enable_host_if - Checks host interface is enabled
936 *  @hw: pointer to the HW structure
937 *
938 *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
939 *
940 *  This function checks whether the HOST IF is enabled for command operation
941 *  and also checks whether the previous command is completed.  It busy waits
942 *  in case of previous command is not completed.
943 **/
944s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
945{
946	return e1000_mng_enable_host_if_generic(hw);
947}
948
949/**
950 *  e1000_check_reset_block - Verifies PHY can be reset
951 *  @hw: pointer to the HW structure
952 *
953 *  Checks if the PHY is in a state that can be reset or if manageability
954 *  has it tied up. This is a function pointer entry point called by drivers.
955 **/
956s32 e1000_check_reset_block(struct e1000_hw *hw)
957{
958	if (hw->phy.ops.check_reset_block)
959		return hw->phy.ops.check_reset_block(hw);
960
961	return E1000_SUCCESS;
962}
963
964/**
965 *  e1000_read_phy_reg - Reads PHY register
966 *  @hw: pointer to the HW structure
967 *  @offset: the register to read
968 *  @data: the buffer to store the 16-bit read.
969 *
970 *  Reads the PHY register and returns the value in data.
971 *  This is a function pointer entry point called by drivers.
972 **/
973s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
974{
975	if (hw->phy.ops.read_reg)
976		return hw->phy.ops.read_reg(hw, offset, data);
977
978	return E1000_SUCCESS;
979}
980
981/**
982 *  e1000_write_phy_reg - Writes PHY register
983 *  @hw: pointer to the HW structure
984 *  @offset: the register to write
985 *  @data: the value to write.
986 *
987 *  Writes the PHY register at offset with the value in data.
988 *  This is a function pointer entry point called by drivers.
989 **/
990s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
991{
992	if (hw->phy.ops.write_reg)
993		return hw->phy.ops.write_reg(hw, offset, data);
994
995	return E1000_SUCCESS;
996}
997
998/**
999 *  e1000_release_phy - Generic release PHY
1000 *  @hw: pointer to the HW structure
1001 *
1002 *  Return if silicon family does not require a semaphore when accessing the
1003 *  PHY.
1004 **/
1005void e1000_release_phy(struct e1000_hw *hw)
1006{
1007	if (hw->phy.ops.release)
1008		hw->phy.ops.release(hw);
1009}
1010
1011/**
1012 *  e1000_acquire_phy - Generic acquire PHY
1013 *  @hw: pointer to the HW structure
1014 *
1015 *  Return success if silicon family does not require a semaphore when
1016 *  accessing the PHY.
1017 **/
1018s32 e1000_acquire_phy(struct e1000_hw *hw)
1019{
1020	if (hw->phy.ops.acquire)
1021		return hw->phy.ops.acquire(hw);
1022
1023	return E1000_SUCCESS;
1024}
1025
1026/**
1027 *  e1000_cfg_on_link_up - Configure PHY upon link up
1028 *  @hw: pointer to the HW structure
1029 **/
1030s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1031{
1032	if (hw->phy.ops.cfg_on_link_up)
1033		return hw->phy.ops.cfg_on_link_up(hw);
1034
1035	return E1000_SUCCESS;
1036}
1037
1038/**
1039 *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1040 *  @hw: pointer to the HW structure
1041 *  @offset: the register to read
1042 *  @data: the location to store the 16-bit value read.
1043 *
1044 *  Reads a register out of the Kumeran interface. Currently no func pointer
1045 *  exists and all implementations are handled in the generic version of
1046 *  this function.
1047 **/
1048s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1049{
1050	return e1000_read_kmrn_reg_generic(hw, offset, data);
1051}
1052
1053/**
1054 *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1055 *  @hw: pointer to the HW structure
1056 *  @offset: the register to write
1057 *  @data: the value to write.
1058 *
1059 *  Writes a register to the Kumeran interface. Currently no func pointer
1060 *  exists and all implementations are handled in the generic version of
1061 *  this function.
1062 **/
1063s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1064{
1065	return e1000_write_kmrn_reg_generic(hw, offset, data);
1066}
1067
1068/**
1069 *  e1000_get_cable_length - Retrieves cable length estimation
1070 *  @hw: pointer to the HW structure
1071 *
1072 *  This function estimates the cable length and stores them in
1073 *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1074 *  entry point called by drivers.
1075 **/
1076s32 e1000_get_cable_length(struct e1000_hw *hw)
1077{
1078	if (hw->phy.ops.get_cable_length)
1079		return hw->phy.ops.get_cable_length(hw);
1080
1081	return E1000_SUCCESS;
1082}
1083
1084/**
1085 *  e1000_get_phy_info - Retrieves PHY information from registers
1086 *  @hw: pointer to the HW structure
1087 *
1088 *  This function gets some information from various PHY registers and
1089 *  populates hw->phy values with it. This is a function pointer entry
1090 *  point called by drivers.
1091 **/
1092s32 e1000_get_phy_info(struct e1000_hw *hw)
1093{
1094	if (hw->phy.ops.get_info)
1095		return hw->phy.ops.get_info(hw);
1096
1097	return E1000_SUCCESS;
1098}
1099
1100/**
1101 *  e1000_phy_hw_reset - Hard PHY reset
1102 *  @hw: pointer to the HW structure
1103 *
1104 *  Performs a hard PHY reset. This is a function pointer entry point called
1105 *  by drivers.
1106 **/
1107s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1108{
1109	if (hw->phy.ops.reset)
1110		return hw->phy.ops.reset(hw);
1111
1112	return E1000_SUCCESS;
1113}
1114
1115/**
1116 *  e1000_phy_commit - Soft PHY reset
1117 *  @hw: pointer to the HW structure
1118 *
1119 *  Performs a soft PHY reset on those that apply. This is a function pointer
1120 *  entry point called by drivers.
1121 **/
1122s32 e1000_phy_commit(struct e1000_hw *hw)
1123{
1124	if (hw->phy.ops.commit)
1125		return hw->phy.ops.commit(hw);
1126
1127	return E1000_SUCCESS;
1128}
1129
1130/**
1131 *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1132 *  @hw: pointer to the HW structure
1133 *  @active: boolean used to enable/disable lplu
1134 *
1135 *  Success returns 0, Failure returns 1
1136 *
1137 *  The low power link up (lplu) state is set to the power management level D0
1138 *  and SmartSpeed is disabled when active is true, else clear lplu for D0
1139 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1140 *  is used during Dx states where the power conservation is most important.
1141 *  During driver activity, SmartSpeed should be enabled so performance is
1142 *  maintained.  This is a function pointer entry point called by drivers.
1143 **/
1144s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1145{
1146	if (hw->phy.ops.set_d0_lplu_state)
1147		return hw->phy.ops.set_d0_lplu_state(hw, active);
1148
1149	return E1000_SUCCESS;
1150}
1151
1152/**
1153 *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1154 *  @hw: pointer to the HW structure
1155 *  @active: boolean used to enable/disable lplu
1156 *
1157 *  Success returns 0, Failure returns 1
1158 *
1159 *  The low power link up (lplu) state is set to the power management level D3
1160 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1161 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1162 *  is used during Dx states where the power conservation is most important.
1163 *  During driver activity, SmartSpeed should be enabled so performance is
1164 *  maintained.  This is a function pointer entry point called by drivers.
1165 **/
1166s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1167{
1168	if (hw->phy.ops.set_d3_lplu_state)
1169		return hw->phy.ops.set_d3_lplu_state(hw, active);
1170
1171	return E1000_SUCCESS;
1172}
1173
1174/**
1175 *  e1000_read_mac_addr - Reads MAC address
1176 *  @hw: pointer to the HW structure
1177 *
1178 *  Reads the MAC address out of the adapter and stores it in the HW structure.
1179 *  Currently no func pointer exists and all implementations are handled in the
1180 *  generic version of this function.
1181 **/
1182s32 e1000_read_mac_addr(struct e1000_hw *hw)
1183{
1184	if (hw->mac.ops.read_mac_addr)
1185		return hw->mac.ops.read_mac_addr(hw);
1186
1187	return e1000_read_mac_addr_generic(hw);
1188}
1189
1190/**
1191 *  e1000_read_pba_string - Read device part number string
1192 *  @hw: pointer to the HW structure
1193 *  @pba_num: pointer to device part number
1194 *  @pba_num_size: size of part number buffer
1195 *
1196 *  Reads the product board assembly (PBA) number from the EEPROM and stores
1197 *  the value in pba_num.
1198 *  Currently no func pointer exists and all implementations are handled in the
1199 *  generic version of this function.
1200 **/
1201s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1202{
1203	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1204}
1205
1206/**
1207 *  e1000_read_pba_length - Read device part number string length
1208 *  @hw: pointer to the HW structure
1209 *  @pba_num_size: size of part number buffer
1210 *
1211 *  Reads the product board assembly (PBA) number length from the EEPROM and
1212 *  stores the value in pba_num.
1213 *  Currently no func pointer exists and all implementations are handled in the
1214 *  generic version of this function.
1215 **/
1216s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1217{
1218	return e1000_read_pba_length_generic(hw, pba_num_size);
1219}
1220
1221/**
1222 *  e1000_read_pba_num - Read device part number
1223 *  @hw: pointer to the HW structure
1224 *  @pba_num: pointer to device part number
1225 *
1226 *  Reads the product board assembly (PBA) number from the EEPROM and stores
1227 *  the value in pba_num.
1228 *  Currently no func pointer exists and all implementations are handled in the
1229 *  generic version of this function.
1230 **/
1231s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1232{
1233	return e1000_read_pba_num_generic(hw, pba_num);
1234}
1235
1236/**
1237 *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1238 *  @hw: pointer to the HW structure
1239 *
1240 *  Validates the NVM checksum is correct. This is a function pointer entry
1241 *  point called by drivers.
1242 **/
1243s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1244{
1245	if (hw->nvm.ops.validate)
1246		return hw->nvm.ops.validate(hw);
1247
1248	return -E1000_ERR_CONFIG;
1249}
1250
1251/**
1252 *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1253 *  @hw: pointer to the HW structure
1254 *
1255 *  Updates the NVM checksum. Currently no func pointer exists and all
1256 *  implementations are handled in the generic version of this function.
1257 **/
1258s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1259{
1260	if (hw->nvm.ops.update)
1261		return hw->nvm.ops.update(hw);
1262
1263	return -E1000_ERR_CONFIG;
1264}
1265
1266/**
1267 *  e1000_reload_nvm - Reloads EEPROM
1268 *  @hw: pointer to the HW structure
1269 *
1270 *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1271 *  extended control register.
1272 **/
1273void e1000_reload_nvm(struct e1000_hw *hw)
1274{
1275	if (hw->nvm.ops.reload)
1276		hw->nvm.ops.reload(hw);
1277}
1278
1279/**
1280 *  e1000_read_nvm - Reads NVM (EEPROM)
1281 *  @hw: pointer to the HW structure
1282 *  @offset: the word offset to read
1283 *  @words: number of 16-bit words to read
1284 *  @data: pointer to the properly sized buffer for the data.
1285 *
1286 *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1287 *  pointer entry point called by drivers.
1288 **/
1289s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1290{
1291	if (hw->nvm.ops.read)
1292		return hw->nvm.ops.read(hw, offset, words, data);
1293
1294	return -E1000_ERR_CONFIG;
1295}
1296
1297/**
1298 *  e1000_write_nvm - Writes to NVM (EEPROM)
1299 *  @hw: pointer to the HW structure
1300 *  @offset: the word offset to read
1301 *  @words: number of 16-bit words to write
1302 *  @data: pointer to the properly sized buffer for the data.
1303 *
1304 *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1305 *  pointer entry point called by drivers.
1306 **/
1307s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1308{
1309	if (hw->nvm.ops.write)
1310		return hw->nvm.ops.write(hw, offset, words, data);
1311
1312	return E1000_SUCCESS;
1313}
1314
1315/**
1316 *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1317 *  @hw: pointer to the HW structure
1318 *  @reg: 32bit register offset
1319 *  @offset: the register to write
1320 *  @data: the value to write.
1321 *
1322 *  Writes the PHY register at offset with the value in data.
1323 *  This is a function pointer entry point called by drivers.
1324 **/
1325s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1326			      u8 data)
1327{
1328	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1329}
1330
1331/**
1332 * e1000_power_up_phy - Restores link in case of PHY power down
1333 * @hw: pointer to the HW structure
1334 *
1335 * The phy may be powered down to save power, to turn off link when the
1336 * driver is unloaded, or wake on lan is not enabled (among others).
1337 **/
1338void e1000_power_up_phy(struct e1000_hw *hw)
1339{
1340	if (hw->phy.ops.power_up)
1341		hw->phy.ops.power_up(hw);
1342
1343	e1000_setup_link(hw);
1344}
1345
1346/**
1347 * e1000_power_down_phy - Power down PHY
1348 * @hw: pointer to the HW structure
1349 *
1350 * The phy may be powered down to save power, to turn off link when the
1351 * driver is unloaded, or wake on lan is not enabled (among others).
1352 **/
1353void e1000_power_down_phy(struct e1000_hw *hw)
1354{
1355	if (hw->phy.ops.power_down)
1356		hw->phy.ops.power_down(hw);
1357}
1358
1359/**
1360 *  e1000_power_up_fiber_serdes_link - Power up serdes link
1361 *  @hw: pointer to the HW structure
1362 *
1363 *  Power on the optics and PCS.
1364 **/
1365void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1366{
1367	if (hw->mac.ops.power_up_serdes)
1368		hw->mac.ops.power_up_serdes(hw);
1369}
1370
1371/**
1372 *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1373 *  @hw: pointer to the HW structure
1374 *
1375 *  Shutdown the optics and PCS on driver unload.
1376 **/
1377void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1378{
1379	if (hw->mac.ops.shutdown_serdes)
1380		hw->mac.ops.shutdown_serdes(hw);
1381}
1382
1383