rte_mempool.c revision 9ca4a157
1/*-
2 *   BSD LICENSE
3 *
4 *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5 *   Copyright(c) 2016 6WIND S.A.
6 *   All rights reserved.
7 *
8 *   Redistribution and use in source and binary forms, with or without
9 *   modification, are permitted provided that the following conditions
10 *   are met:
11 *
12 *     * Redistributions of source code must retain the above copyright
13 *       notice, this list of conditions and the following disclaimer.
14 *     * Redistributions in binary form must reproduce the above copyright
15 *       notice, this list of conditions and the following disclaimer in
16 *       the documentation and/or other materials provided with the
17 *       distribution.
18 *     * Neither the name of Intel Corporation nor the names of its
19 *       contributors may be used to endorse or promote products derived
20 *       from this software without specific prior written permission.
21 *
22 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35#include <stdio.h>
36#include <string.h>
37#include <stdint.h>
38#include <stdarg.h>
39#include <unistd.h>
40#include <inttypes.h>
41#include <errno.h>
42#include <sys/queue.h>
43#include <sys/mman.h>
44
45#include <rte_common.h>
46#include <rte_log.h>
47#include <rte_debug.h>
48#include <rte_memory.h>
49#include <rte_memzone.h>
50#include <rte_malloc.h>
51#include <rte_atomic.h>
52#include <rte_launch.h>
53#include <rte_eal.h>
54#include <rte_eal_memconfig.h>
55#include <rte_per_lcore.h>
56#include <rte_lcore.h>
57#include <rte_branch_prediction.h>
58#include <rte_errno.h>
59#include <rte_string_fns.h>
60#include <rte_spinlock.h>
61
62#include "rte_mempool.h"
63
64TAILQ_HEAD(rte_mempool_list, rte_tailq_entry);
65
66static struct rte_tailq_elem rte_mempool_tailq = {
67	.name = "RTE_MEMPOOL",
68};
69EAL_REGISTER_TAILQ(rte_mempool_tailq)
70
71#define CACHE_FLUSHTHRESH_MULTIPLIER 1.5
72#define CALC_CACHE_FLUSHTHRESH(c)	\
73	((typeof(c))((c) * CACHE_FLUSHTHRESH_MULTIPLIER))
74
75/*
76 * return the greatest common divisor between a and b (fast algorithm)
77 *
78 */
79static unsigned get_gcd(unsigned a, unsigned b)
80{
81	unsigned c;
82
83	if (0 == a)
84		return b;
85	if (0 == b)
86		return a;
87
88	if (a < b) {
89		c = a;
90		a = b;
91		b = c;
92	}
93
94	while (b != 0) {
95		c = a % b;
96		a = b;
97		b = c;
98	}
99
100	return a;
101}
102
103/*
104 * Depending on memory configuration, objects addresses are spread
105 * between channels and ranks in RAM: the pool allocator will add
106 * padding between objects. This function return the new size of the
107 * object.
108 */
109static unsigned optimize_object_size(unsigned obj_size)
110{
111	unsigned nrank, nchan;
112	unsigned new_obj_size;
113
114	/* get number of channels */
115	nchan = rte_memory_get_nchannel();
116	if (nchan == 0)
117		nchan = 4;
118
119	nrank = rte_memory_get_nrank();
120	if (nrank == 0)
121		nrank = 1;
122
123	/* process new object size */
124	new_obj_size = (obj_size + RTE_MEMPOOL_ALIGN_MASK) / RTE_MEMPOOL_ALIGN;
125	while (get_gcd(new_obj_size, nrank * nchan) != 1)
126		new_obj_size++;
127	return new_obj_size * RTE_MEMPOOL_ALIGN;
128}
129
130static void
131mempool_add_elem(struct rte_mempool *mp, void *obj, phys_addr_t physaddr)
132{
133	struct rte_mempool_objhdr *hdr;
134	struct rte_mempool_objtlr *tlr __rte_unused;
135
136	/* set mempool ptr in header */
137	hdr = RTE_PTR_SUB(obj, sizeof(*hdr));
138	hdr->mp = mp;
139	hdr->physaddr = physaddr;
140	STAILQ_INSERT_TAIL(&mp->elt_list, hdr, next);
141	mp->populated_size++;
142
143#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
144	hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
145	tlr = __mempool_get_trailer(obj);
146	tlr->cookie = RTE_MEMPOOL_TRAILER_COOKIE;
147#endif
148
149	/* enqueue in ring */
150	rte_mempool_ops_enqueue_bulk(mp, &obj, 1);
151}
152
153/* call obj_cb() for each mempool element */
154uint32_t
155rte_mempool_obj_iter(struct rte_mempool *mp,
156	rte_mempool_obj_cb_t *obj_cb, void *obj_cb_arg)
157{
158	struct rte_mempool_objhdr *hdr;
159	void *obj;
160	unsigned n = 0;
161
162	STAILQ_FOREACH(hdr, &mp->elt_list, next) {
163		obj = (char *)hdr + sizeof(*hdr);
164		obj_cb(mp, obj_cb_arg, obj, n);
165		n++;
166	}
167
168	return n;
169}
170
171/* call mem_cb() for each mempool memory chunk */
172uint32_t
173rte_mempool_mem_iter(struct rte_mempool *mp,
174	rte_mempool_mem_cb_t *mem_cb, void *mem_cb_arg)
175{
176	struct rte_mempool_memhdr *hdr;
177	unsigned n = 0;
178
179	STAILQ_FOREACH(hdr, &mp->mem_list, next) {
180		mem_cb(mp, mem_cb_arg, hdr, n);
181		n++;
182	}
183
184	return n;
185}
186
187/* get the header, trailer and total size of a mempool element. */
188uint32_t
189rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
190	struct rte_mempool_objsz *sz)
191{
192	struct rte_mempool_objsz lsz;
193
194	sz = (sz != NULL) ? sz : &lsz;
195
196	sz->header_size = sizeof(struct rte_mempool_objhdr);
197	if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0)
198		sz->header_size = RTE_ALIGN_CEIL(sz->header_size,
199			RTE_MEMPOOL_ALIGN);
200
201#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
202	sz->trailer_size = sizeof(struct rte_mempool_objtlr);
203#else
204	sz->trailer_size = 0;
205#endif
206
207	/* element size is 8 bytes-aligned at least */
208	sz->elt_size = RTE_ALIGN_CEIL(elt_size, sizeof(uint64_t));
209
210	/* expand trailer to next cache line */
211	if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0) {
212		sz->total_size = sz->header_size + sz->elt_size +
213			sz->trailer_size;
214		sz->trailer_size += ((RTE_MEMPOOL_ALIGN -
215				  (sz->total_size & RTE_MEMPOOL_ALIGN_MASK)) &
216				 RTE_MEMPOOL_ALIGN_MASK);
217	}
218
219	/*
220	 * increase trailer to add padding between objects in order to
221	 * spread them across memory channels/ranks
222	 */
223	if ((flags & MEMPOOL_F_NO_SPREAD) == 0) {
224		unsigned new_size;
225		new_size = optimize_object_size(sz->header_size + sz->elt_size +
226			sz->trailer_size);
227		sz->trailer_size = new_size - sz->header_size - sz->elt_size;
228	}
229
230	/* this is the size of an object, including header and trailer */
231	sz->total_size = sz->header_size + sz->elt_size + sz->trailer_size;
232
233	return sz->total_size;
234}
235
236
237/*
238 * Calculate maximum amount of memory required to store given number of objects.
239 */
240size_t
241rte_mempool_xmem_size(uint32_t elt_num, size_t total_elt_sz, uint32_t pg_shift)
242{
243	size_t obj_per_page, pg_num, pg_sz;
244
245	if (total_elt_sz == 0)
246		return 0;
247
248	if (pg_shift == 0)
249		return total_elt_sz * elt_num;
250
251	pg_sz = (size_t)1 << pg_shift;
252	obj_per_page = pg_sz / total_elt_sz;
253	if (obj_per_page == 0)
254		return RTE_ALIGN_CEIL(total_elt_sz, pg_sz) * elt_num;
255
256	pg_num = (elt_num + obj_per_page - 1) / obj_per_page;
257	return pg_num << pg_shift;
258}
259
260/*
261 * Calculate how much memory would be actually required with the
262 * given memory footprint to store required number of elements.
263 */
264ssize_t
265rte_mempool_xmem_usage(__rte_unused void *vaddr, uint32_t elt_num,
266	size_t total_elt_sz, const phys_addr_t paddr[], uint32_t pg_num,
267	uint32_t pg_shift)
268{
269	uint32_t elt_cnt = 0;
270	phys_addr_t start, end;
271	uint32_t paddr_idx;
272	size_t pg_sz = (size_t)1 << pg_shift;
273
274	/* if paddr is NULL, assume contiguous memory */
275	if (paddr == NULL) {
276		start = 0;
277		end = pg_sz * pg_num;
278		paddr_idx = pg_num;
279	} else {
280		start = paddr[0];
281		end = paddr[0] + pg_sz;
282		paddr_idx = 1;
283	}
284	while (elt_cnt < elt_num) {
285
286		if (end - start >= total_elt_sz) {
287			/* enough contiguous memory, add an object */
288			start += total_elt_sz;
289			elt_cnt++;
290		} else if (paddr_idx < pg_num) {
291			/* no room to store one obj, add a page */
292			if (end == paddr[paddr_idx]) {
293				end += pg_sz;
294			} else {
295				start = paddr[paddr_idx];
296				end = paddr[paddr_idx] + pg_sz;
297			}
298			paddr_idx++;
299
300		} else {
301			/* no more page, return how many elements fit */
302			return -(size_t)elt_cnt;
303		}
304	}
305
306	return (size_t)paddr_idx << pg_shift;
307}
308
309/* free a memchunk allocated with rte_memzone_reserve() */
310static void
311rte_mempool_memchunk_mz_free(__rte_unused struct rte_mempool_memhdr *memhdr,
312	void *opaque)
313{
314	const struct rte_memzone *mz = opaque;
315	rte_memzone_free(mz);
316}
317
318/* Free memory chunks used by a mempool. Objects must be in pool */
319static void
320rte_mempool_free_memchunks(struct rte_mempool *mp)
321{
322	struct rte_mempool_memhdr *memhdr;
323	void *elt;
324
325	while (!STAILQ_EMPTY(&mp->elt_list)) {
326		rte_mempool_ops_dequeue_bulk(mp, &elt, 1);
327		(void)elt;
328		STAILQ_REMOVE_HEAD(&mp->elt_list, next);
329		mp->populated_size--;
330	}
331
332	while (!STAILQ_EMPTY(&mp->mem_list)) {
333		memhdr = STAILQ_FIRST(&mp->mem_list);
334		STAILQ_REMOVE_HEAD(&mp->mem_list, next);
335		if (memhdr->free_cb != NULL)
336			memhdr->free_cb(memhdr, memhdr->opaque);
337		rte_free(memhdr);
338		mp->nb_mem_chunks--;
339	}
340}
341
342/* Add objects in the pool, using a physically contiguous memory
343 * zone. Return the number of objects added, or a negative value
344 * on error.
345 */
346int
347rte_mempool_populate_phys(struct rte_mempool *mp, char *vaddr,
348	phys_addr_t paddr, size_t len, rte_mempool_memchunk_free_cb_t *free_cb,
349	void *opaque)
350{
351	unsigned total_elt_sz;
352	unsigned i = 0;
353	size_t off;
354	struct rte_mempool_memhdr *memhdr;
355	int ret;
356
357	/* create the internal ring if not already done */
358	if ((mp->flags & MEMPOOL_F_POOL_CREATED) == 0) {
359		ret = rte_mempool_ops_alloc(mp);
360		if (ret != 0)
361			return ret;
362		mp->flags |= MEMPOOL_F_POOL_CREATED;
363	}
364
365	/* mempool is already populated */
366	if (mp->populated_size >= mp->size)
367		return -ENOSPC;
368
369	total_elt_sz = mp->header_size + mp->elt_size + mp->trailer_size;
370
371	memhdr = rte_zmalloc("MEMPOOL_MEMHDR", sizeof(*memhdr), 0);
372	if (memhdr == NULL)
373		return -ENOMEM;
374
375	memhdr->mp = mp;
376	memhdr->addr = vaddr;
377	memhdr->phys_addr = paddr;
378	memhdr->len = len;
379	memhdr->free_cb = free_cb;
380	memhdr->opaque = opaque;
381
382	if (mp->flags & MEMPOOL_F_NO_CACHE_ALIGN)
383		off = RTE_PTR_ALIGN_CEIL(vaddr, 8) - vaddr;
384	else
385		off = RTE_PTR_ALIGN_CEIL(vaddr, RTE_CACHE_LINE_SIZE) - vaddr;
386
387	while (off + total_elt_sz <= len && mp->populated_size < mp->size) {
388		off += mp->header_size;
389		if (paddr == RTE_BAD_PHYS_ADDR)
390			mempool_add_elem(mp, (char *)vaddr + off,
391				RTE_BAD_PHYS_ADDR);
392		else
393			mempool_add_elem(mp, (char *)vaddr + off, paddr + off);
394		off += mp->elt_size + mp->trailer_size;
395		i++;
396	}
397
398	/* not enough room to store one object */
399	if (i == 0)
400		return -EINVAL;
401
402	STAILQ_INSERT_TAIL(&mp->mem_list, memhdr, next);
403	mp->nb_mem_chunks++;
404	return i;
405}
406
407/* Add objects in the pool, using a table of physical pages. Return the
408 * number of objects added, or a negative value on error.
409 */
410int
411rte_mempool_populate_phys_tab(struct rte_mempool *mp, char *vaddr,
412	const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift,
413	rte_mempool_memchunk_free_cb_t *free_cb, void *opaque)
414{
415	uint32_t i, n;
416	int ret, cnt = 0;
417	size_t pg_sz = (size_t)1 << pg_shift;
418
419	/* mempool must not be populated */
420	if (mp->nb_mem_chunks != 0)
421		return -EEXIST;
422
423	if (mp->flags & MEMPOOL_F_NO_PHYS_CONTIG)
424		return rte_mempool_populate_phys(mp, vaddr, RTE_BAD_PHYS_ADDR,
425			pg_num * pg_sz, free_cb, opaque);
426
427	for (i = 0; i < pg_num && mp->populated_size < mp->size; i += n) {
428
429		/* populate with the largest group of contiguous pages */
430		for (n = 1; (i + n) < pg_num &&
431			     paddr[i + n - 1] + pg_sz == paddr[i + n]; n++)
432			;
433
434		ret = rte_mempool_populate_phys(mp, vaddr + i * pg_sz,
435			paddr[i], n * pg_sz, free_cb, opaque);
436		if (ret < 0) {
437			rte_mempool_free_memchunks(mp);
438			return ret;
439		}
440		/* no need to call the free callback for next chunks */
441		free_cb = NULL;
442		cnt += ret;
443	}
444	return cnt;
445}
446
447/* Populate the mempool with a virtual area. Return the number of
448 * objects added, or a negative value on error.
449 */
450int
451rte_mempool_populate_virt(struct rte_mempool *mp, char *addr,
452	size_t len, size_t pg_sz, rte_mempool_memchunk_free_cb_t *free_cb,
453	void *opaque)
454{
455	phys_addr_t paddr;
456	size_t off, phys_len;
457	int ret, cnt = 0;
458
459	/* mempool must not be populated */
460	if (mp->nb_mem_chunks != 0)
461		return -EEXIST;
462	/* address and len must be page-aligned */
463	if (RTE_PTR_ALIGN_CEIL(addr, pg_sz) != addr)
464		return -EINVAL;
465	if (RTE_ALIGN_CEIL(len, pg_sz) != len)
466		return -EINVAL;
467
468	if (mp->flags & MEMPOOL_F_NO_PHYS_CONTIG)
469		return rte_mempool_populate_phys(mp, addr, RTE_BAD_PHYS_ADDR,
470			len, free_cb, opaque);
471
472	for (off = 0; off + pg_sz <= len &&
473		     mp->populated_size < mp->size; off += phys_len) {
474
475		paddr = rte_mem_virt2phy(addr + off);
476		/* required for xen_dom0 to get the machine address */
477		paddr = rte_mem_phy2mch(-1, paddr);
478
479		if (paddr == RTE_BAD_PHYS_ADDR) {
480			ret = -EINVAL;
481			goto fail;
482		}
483
484		/* populate with the largest group of contiguous pages */
485		for (phys_len = pg_sz; off + phys_len < len; phys_len += pg_sz) {
486			phys_addr_t paddr_tmp;
487
488			paddr_tmp = rte_mem_virt2phy(addr + off + phys_len);
489			paddr_tmp = rte_mem_phy2mch(-1, paddr_tmp);
490
491			if (paddr_tmp != paddr + phys_len)
492				break;
493		}
494
495		ret = rte_mempool_populate_phys(mp, addr + off, paddr,
496			phys_len, free_cb, opaque);
497		if (ret < 0)
498			goto fail;
499		/* no need to call the free callback for next chunks */
500		free_cb = NULL;
501		cnt += ret;
502	}
503
504	return cnt;
505
506 fail:
507	rte_mempool_free_memchunks(mp);
508	return ret;
509}
510
511/* Default function to populate the mempool: allocate memory in memzones,
512 * and populate them. Return the number of objects added, or a negative
513 * value on error.
514 */
515int
516rte_mempool_populate_default(struct rte_mempool *mp)
517{
518	int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
519	char mz_name[RTE_MEMZONE_NAMESIZE];
520	const struct rte_memzone *mz;
521	size_t size, total_elt_sz, align, pg_sz, pg_shift;
522	phys_addr_t paddr;
523	unsigned mz_id, n;
524	int ret;
525
526	/* mempool must not be populated */
527	if (mp->nb_mem_chunks != 0)
528		return -EEXIST;
529
530	if (rte_xen_dom0_supported()) {
531		pg_sz = RTE_PGSIZE_2M;
532		pg_shift = rte_bsf32(pg_sz);
533		align = pg_sz;
534	} else if (rte_eal_has_hugepages()) {
535		pg_shift = 0; /* not needed, zone is physically contiguous */
536		pg_sz = 0;
537		align = RTE_CACHE_LINE_SIZE;
538	} else {
539		pg_sz = getpagesize();
540		pg_shift = rte_bsf32(pg_sz);
541		align = pg_sz;
542	}
543
544	total_elt_sz = mp->header_size + mp->elt_size + mp->trailer_size;
545	for (mz_id = 0, n = mp->size; n > 0; mz_id++, n -= ret) {
546		size = rte_mempool_xmem_size(n, total_elt_sz, pg_shift);
547
548		ret = snprintf(mz_name, sizeof(mz_name),
549			RTE_MEMPOOL_MZ_FORMAT "_%d", mp->name, mz_id);
550		if (ret < 0 || ret >= (int)sizeof(mz_name)) {
551			ret = -ENAMETOOLONG;
552			goto fail;
553		}
554
555		mz = rte_memzone_reserve_aligned(mz_name, size,
556			mp->socket_id, mz_flags, align);
557		/* not enough memory, retry with the biggest zone we have */
558		if (mz == NULL)
559			mz = rte_memzone_reserve_aligned(mz_name, 0,
560				mp->socket_id, mz_flags, align);
561		if (mz == NULL) {
562			ret = -rte_errno;
563			goto fail;
564		}
565
566		if (mp->flags & MEMPOOL_F_NO_PHYS_CONTIG)
567			paddr = RTE_BAD_PHYS_ADDR;
568		else
569			paddr = mz->phys_addr;
570
571		if (rte_eal_has_hugepages() && !rte_xen_dom0_supported())
572			ret = rte_mempool_populate_phys(mp, mz->addr,
573				paddr, mz->len,
574				rte_mempool_memchunk_mz_free,
575				(void *)(uintptr_t)mz);
576		else
577			ret = rte_mempool_populate_virt(mp, mz->addr,
578				mz->len, pg_sz,
579				rte_mempool_memchunk_mz_free,
580				(void *)(uintptr_t)mz);
581		if (ret < 0) {
582			rte_memzone_free(mz);
583			goto fail;
584		}
585	}
586
587	return mp->size;
588
589 fail:
590	rte_mempool_free_memchunks(mp);
591	return ret;
592}
593
594/* return the memory size required for mempool objects in anonymous mem */
595static size_t
596get_anon_size(const struct rte_mempool *mp)
597{
598	size_t size, total_elt_sz, pg_sz, pg_shift;
599
600	pg_sz = getpagesize();
601	pg_shift = rte_bsf32(pg_sz);
602	total_elt_sz = mp->header_size + mp->elt_size + mp->trailer_size;
603	size = rte_mempool_xmem_size(mp->size, total_elt_sz, pg_shift);
604
605	return size;
606}
607
608/* unmap a memory zone mapped by rte_mempool_populate_anon() */
609static void
610rte_mempool_memchunk_anon_free(struct rte_mempool_memhdr *memhdr,
611	void *opaque)
612{
613	munmap(opaque, get_anon_size(memhdr->mp));
614}
615
616/* populate the mempool with an anonymous mapping */
617int
618rte_mempool_populate_anon(struct rte_mempool *mp)
619{
620	size_t size;
621	int ret;
622	char *addr;
623
624	/* mempool is already populated, error */
625	if (!STAILQ_EMPTY(&mp->mem_list)) {
626		rte_errno = EINVAL;
627		return 0;
628	}
629
630	/* get chunk of virtually continuous memory */
631	size = get_anon_size(mp);
632	addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
633		MAP_SHARED | MAP_ANONYMOUS, -1, 0);
634	if (addr == MAP_FAILED) {
635		rte_errno = errno;
636		return 0;
637	}
638	/* can't use MMAP_LOCKED, it does not exist on BSD */
639	if (mlock(addr, size) < 0) {
640		rte_errno = errno;
641		munmap(addr, size);
642		return 0;
643	}
644
645	ret = rte_mempool_populate_virt(mp, addr, size, getpagesize(),
646		rte_mempool_memchunk_anon_free, addr);
647	if (ret == 0)
648		goto fail;
649
650	return mp->populated_size;
651
652 fail:
653	rte_mempool_free_memchunks(mp);
654	return 0;
655}
656
657/* free a mempool */
658void
659rte_mempool_free(struct rte_mempool *mp)
660{
661	struct rte_mempool_list *mempool_list = NULL;
662	struct rte_tailq_entry *te;
663
664	if (mp == NULL)
665		return;
666
667	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
668	rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
669	/* find out tailq entry */
670	TAILQ_FOREACH(te, mempool_list, next) {
671		if (te->data == (void *)mp)
672			break;
673	}
674
675	if (te != NULL) {
676		TAILQ_REMOVE(mempool_list, te, next);
677		rte_free(te);
678	}
679	rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
680
681	rte_mempool_free_memchunks(mp);
682	rte_mempool_ops_free(mp);
683	rte_memzone_free(mp->mz);
684}
685
686static void
687mempool_cache_init(struct rte_mempool_cache *cache, uint32_t size)
688{
689	cache->size = size;
690	cache->flushthresh = CALC_CACHE_FLUSHTHRESH(size);
691	cache->len = 0;
692}
693
694/*
695 * Create and initialize a cache for objects that are retrieved from and
696 * returned to an underlying mempool. This structure is identical to the
697 * local_cache[lcore_id] pointed to by the mempool structure.
698 */
699struct rte_mempool_cache *
700rte_mempool_cache_create(uint32_t size, int socket_id)
701{
702	struct rte_mempool_cache *cache;
703
704	if (size == 0 || size > RTE_MEMPOOL_CACHE_MAX_SIZE) {
705		rte_errno = EINVAL;
706		return NULL;
707	}
708
709	cache = rte_zmalloc_socket("MEMPOOL_CACHE", sizeof(*cache),
710				  RTE_CACHE_LINE_SIZE, socket_id);
711	if (cache == NULL) {
712		RTE_LOG(ERR, MEMPOOL, "Cannot allocate mempool cache.\n");
713		rte_errno = ENOMEM;
714		return NULL;
715	}
716
717	mempool_cache_init(cache, size);
718
719	return cache;
720}
721
722/*
723 * Free a cache. It's the responsibility of the user to make sure that any
724 * remaining objects in the cache are flushed to the corresponding
725 * mempool.
726 */
727void
728rte_mempool_cache_free(struct rte_mempool_cache *cache)
729{
730	rte_free(cache);
731}
732
733/* create an empty mempool */
734struct rte_mempool *
735rte_mempool_create_empty(const char *name, unsigned n, unsigned elt_size,
736	unsigned cache_size, unsigned private_data_size,
737	int socket_id, unsigned flags)
738{
739	char mz_name[RTE_MEMZONE_NAMESIZE];
740	struct rte_mempool_list *mempool_list;
741	struct rte_mempool *mp = NULL;
742	struct rte_tailq_entry *te = NULL;
743	const struct rte_memzone *mz = NULL;
744	size_t mempool_size;
745	int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
746	struct rte_mempool_objsz objsz;
747	unsigned lcore_id;
748	int ret;
749
750	/* compilation-time checks */
751	RTE_BUILD_BUG_ON((sizeof(struct rte_mempool) &
752			  RTE_CACHE_LINE_MASK) != 0);
753	RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_cache) &
754			  RTE_CACHE_LINE_MASK) != 0);
755#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
756	RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_debug_stats) &
757			  RTE_CACHE_LINE_MASK) != 0);
758	RTE_BUILD_BUG_ON((offsetof(struct rte_mempool, stats) &
759			  RTE_CACHE_LINE_MASK) != 0);
760#endif
761
762	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
763
764	/* asked cache too big */
765	if (cache_size > RTE_MEMPOOL_CACHE_MAX_SIZE ||
766	    CALC_CACHE_FLUSHTHRESH(cache_size) > n) {
767		rte_errno = EINVAL;
768		return NULL;
769	}
770
771	/* "no cache align" imply "no spread" */
772	if (flags & MEMPOOL_F_NO_CACHE_ALIGN)
773		flags |= MEMPOOL_F_NO_SPREAD;
774
775	/* calculate mempool object sizes. */
776	if (!rte_mempool_calc_obj_size(elt_size, flags, &objsz)) {
777		rte_errno = EINVAL;
778		return NULL;
779	}
780
781	rte_rwlock_write_lock(RTE_EAL_MEMPOOL_RWLOCK);
782
783	/*
784	 * reserve a memory zone for this mempool: private data is
785	 * cache-aligned
786	 */
787	private_data_size = (private_data_size +
788			     RTE_MEMPOOL_ALIGN_MASK) & (~RTE_MEMPOOL_ALIGN_MASK);
789
790
791	/* try to allocate tailq entry */
792	te = rte_zmalloc("MEMPOOL_TAILQ_ENTRY", sizeof(*te), 0);
793	if (te == NULL) {
794		RTE_LOG(ERR, MEMPOOL, "Cannot allocate tailq entry!\n");
795		goto exit_unlock;
796	}
797
798	mempool_size = MEMPOOL_HEADER_SIZE(mp, cache_size);
799	mempool_size += private_data_size;
800	mempool_size = RTE_ALIGN_CEIL(mempool_size, RTE_MEMPOOL_ALIGN);
801
802	ret = snprintf(mz_name, sizeof(mz_name), RTE_MEMPOOL_MZ_FORMAT, name);
803	if (ret < 0 || ret >= (int)sizeof(mz_name)) {
804		rte_errno = ENAMETOOLONG;
805		goto exit_unlock;
806	}
807
808	mz = rte_memzone_reserve(mz_name, mempool_size, socket_id, mz_flags);
809	if (mz == NULL)
810		goto exit_unlock;
811
812	/* init the mempool structure */
813	mp = mz->addr;
814	memset(mp, 0, MEMPOOL_HEADER_SIZE(mp, cache_size));
815	ret = snprintf(mp->name, sizeof(mp->name), "%s", name);
816	if (ret < 0 || ret >= (int)sizeof(mp->name)) {
817		rte_errno = ENAMETOOLONG;
818		goto exit_unlock;
819	}
820	mp->mz = mz;
821	mp->size = n;
822	mp->flags = flags;
823	mp->socket_id = socket_id;
824	mp->elt_size = objsz.elt_size;
825	mp->header_size = objsz.header_size;
826	mp->trailer_size = objsz.trailer_size;
827	/* Size of default caches, zero means disabled. */
828	mp->cache_size = cache_size;
829	mp->private_data_size = private_data_size;
830	STAILQ_INIT(&mp->elt_list);
831	STAILQ_INIT(&mp->mem_list);
832
833	/*
834	 * local_cache pointer is set even if cache_size is zero.
835	 * The local_cache points to just past the elt_pa[] array.
836	 */
837	mp->local_cache = (struct rte_mempool_cache *)
838		RTE_PTR_ADD(mp, MEMPOOL_HEADER_SIZE(mp, 0));
839
840	/* Init all default caches. */
841	if (cache_size != 0) {
842		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
843			mempool_cache_init(&mp->local_cache[lcore_id],
844					   cache_size);
845	}
846
847	te->data = mp;
848
849	rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
850	TAILQ_INSERT_TAIL(mempool_list, te, next);
851	rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
852	rte_rwlock_write_unlock(RTE_EAL_MEMPOOL_RWLOCK);
853
854	return mp;
855
856exit_unlock:
857	rte_rwlock_write_unlock(RTE_EAL_MEMPOOL_RWLOCK);
858	rte_free(te);
859	rte_mempool_free(mp);
860	return NULL;
861}
862
863/* create the mempool */
864struct rte_mempool *
865rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
866	unsigned cache_size, unsigned private_data_size,
867	rte_mempool_ctor_t *mp_init, void *mp_init_arg,
868	rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
869	int socket_id, unsigned flags)
870{
871	struct rte_mempool *mp;
872
873	mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
874		private_data_size, socket_id, flags);
875	if (mp == NULL)
876		return NULL;
877
878	/*
879	 * Since we have 4 combinations of the SP/SC/MP/MC examine the flags to
880	 * set the correct index into the table of ops structs.
881	 */
882	if ((flags & MEMPOOL_F_SP_PUT) && (flags & MEMPOOL_F_SC_GET))
883		rte_mempool_set_ops_byname(mp, "ring_sp_sc", NULL);
884	else if (flags & MEMPOOL_F_SP_PUT)
885		rte_mempool_set_ops_byname(mp, "ring_sp_mc", NULL);
886	else if (flags & MEMPOOL_F_SC_GET)
887		rte_mempool_set_ops_byname(mp, "ring_mp_sc", NULL);
888	else
889		rte_mempool_set_ops_byname(mp, "ring_mp_mc", NULL);
890
891	/* call the mempool priv initializer */
892	if (mp_init)
893		mp_init(mp, mp_init_arg);
894
895	if (rte_mempool_populate_default(mp) < 0)
896		goto fail;
897
898	/* call the object initializers */
899	if (obj_init)
900		rte_mempool_obj_iter(mp, obj_init, obj_init_arg);
901
902	return mp;
903
904 fail:
905	rte_mempool_free(mp);
906	return NULL;
907}
908
909/*
910 * Create the mempool over already allocated chunk of memory.
911 * That external memory buffer can consists of physically disjoint pages.
912 * Setting vaddr to NULL, makes mempool to fallback to rte_mempool_create()
913 * behavior.
914 */
915struct rte_mempool *
916rte_mempool_xmem_create(const char *name, unsigned n, unsigned elt_size,
917		unsigned cache_size, unsigned private_data_size,
918		rte_mempool_ctor_t *mp_init, void *mp_init_arg,
919		rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
920		int socket_id, unsigned flags, void *vaddr,
921		const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift)
922{
923	struct rte_mempool *mp = NULL;
924	int ret;
925
926	/* no virtual address supplied, use rte_mempool_create() */
927	if (vaddr == NULL)
928		return rte_mempool_create(name, n, elt_size, cache_size,
929			private_data_size, mp_init, mp_init_arg,
930			obj_init, obj_init_arg, socket_id, flags);
931
932	/* check that we have both VA and PA */
933	if (paddr == NULL) {
934		rte_errno = EINVAL;
935		return NULL;
936	}
937
938	/* Check that pg_shift parameter is valid. */
939	if (pg_shift > MEMPOOL_PG_SHIFT_MAX) {
940		rte_errno = EINVAL;
941		return NULL;
942	}
943
944	mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
945		private_data_size, socket_id, flags);
946	if (mp == NULL)
947		return NULL;
948
949	/* call the mempool priv initializer */
950	if (mp_init)
951		mp_init(mp, mp_init_arg);
952
953	ret = rte_mempool_populate_phys_tab(mp, vaddr, paddr, pg_num, pg_shift,
954		NULL, NULL);
955	if (ret < 0 || ret != (int)mp->size)
956		goto fail;
957
958	/* call the object initializers */
959	if (obj_init)
960		rte_mempool_obj_iter(mp, obj_init, obj_init_arg);
961
962	return mp;
963
964 fail:
965	rte_mempool_free(mp);
966	return NULL;
967}
968
969/* Return the number of entries in the mempool */
970unsigned int
971rte_mempool_avail_count(const struct rte_mempool *mp)
972{
973	unsigned count;
974	unsigned lcore_id;
975
976	count = rte_mempool_ops_get_count(mp);
977
978	if (mp->cache_size == 0)
979		return count;
980
981	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
982		count += mp->local_cache[lcore_id].len;
983
984	/*
985	 * due to race condition (access to len is not locked), the
986	 * total can be greater than size... so fix the result
987	 */
988	if (count > mp->size)
989		return mp->size;
990	return count;
991}
992
993/* return the number of entries allocated from the mempool */
994unsigned int
995rte_mempool_in_use_count(const struct rte_mempool *mp)
996{
997	return mp->size - rte_mempool_avail_count(mp);
998}
999
1000unsigned int
1001rte_mempool_count(const struct rte_mempool *mp)
1002{
1003	return rte_mempool_avail_count(mp);
1004}
1005
1006/* dump the cache status */
1007static unsigned
1008rte_mempool_dump_cache(FILE *f, const struct rte_mempool *mp)
1009{
1010	unsigned lcore_id;
1011	unsigned count = 0;
1012	unsigned cache_count;
1013
1014	fprintf(f, "  internal cache infos:\n");
1015	fprintf(f, "    cache_size=%"PRIu32"\n", mp->cache_size);
1016
1017	if (mp->cache_size == 0)
1018		return count;
1019
1020	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1021		cache_count = mp->local_cache[lcore_id].len;
1022		fprintf(f, "    cache_count[%u]=%"PRIu32"\n",
1023			lcore_id, cache_count);
1024		count += cache_count;
1025	}
1026	fprintf(f, "    total_cache_count=%u\n", count);
1027	return count;
1028}
1029
1030#ifndef __INTEL_COMPILER
1031#pragma GCC diagnostic ignored "-Wcast-qual"
1032#endif
1033
1034/* check and update cookies or panic (internal) */
1035void rte_mempool_check_cookies(const struct rte_mempool *mp,
1036	void * const *obj_table_const, unsigned n, int free)
1037{
1038#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1039	struct rte_mempool_objhdr *hdr;
1040	struct rte_mempool_objtlr *tlr;
1041	uint64_t cookie;
1042	void *tmp;
1043	void *obj;
1044	void **obj_table;
1045
1046	/* Force to drop the "const" attribute. This is done only when
1047	 * DEBUG is enabled */
1048	tmp = (void *) obj_table_const;
1049	obj_table = (void **) tmp;
1050
1051	while (n--) {
1052		obj = obj_table[n];
1053
1054		if (rte_mempool_from_obj(obj) != mp)
1055			rte_panic("MEMPOOL: object is owned by another "
1056				  "mempool\n");
1057
1058		hdr = __mempool_get_header(obj);
1059		cookie = hdr->cookie;
1060
1061		if (free == 0) {
1062			if (cookie != RTE_MEMPOOL_HEADER_COOKIE1) {
1063				RTE_LOG(CRIT, MEMPOOL,
1064					"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1065					obj, (const void *) mp, cookie);
1066				rte_panic("MEMPOOL: bad header cookie (put)\n");
1067			}
1068			hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
1069		} else if (free == 1) {
1070			if (cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
1071				RTE_LOG(CRIT, MEMPOOL,
1072					"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1073					obj, (const void *) mp, cookie);
1074				rte_panic("MEMPOOL: bad header cookie (get)\n");
1075			}
1076			hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE1;
1077		} else if (free == 2) {
1078			if (cookie != RTE_MEMPOOL_HEADER_COOKIE1 &&
1079			    cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
1080				RTE_LOG(CRIT, MEMPOOL,
1081					"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1082					obj, (const void *) mp, cookie);
1083				rte_panic("MEMPOOL: bad header cookie (audit)\n");
1084			}
1085		}
1086		tlr = __mempool_get_trailer(obj);
1087		cookie = tlr->cookie;
1088		if (cookie != RTE_MEMPOOL_TRAILER_COOKIE) {
1089			RTE_LOG(CRIT, MEMPOOL,
1090				"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1091				obj, (const void *) mp, cookie);
1092			rte_panic("MEMPOOL: bad trailer cookie\n");
1093		}
1094	}
1095#else
1096	RTE_SET_USED(mp);
1097	RTE_SET_USED(obj_table_const);
1098	RTE_SET_USED(n);
1099	RTE_SET_USED(free);
1100#endif
1101}
1102
1103#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1104static void
1105mempool_obj_audit(struct rte_mempool *mp, __rte_unused void *opaque,
1106	void *obj, __rte_unused unsigned idx)
1107{
1108	__mempool_check_cookies(mp, &obj, 1, 2);
1109}
1110
1111static void
1112mempool_audit_cookies(struct rte_mempool *mp)
1113{
1114	unsigned num;
1115
1116	num = rte_mempool_obj_iter(mp, mempool_obj_audit, NULL);
1117	if (num != mp->size) {
1118		rte_panic("rte_mempool_obj_iter(mempool=%p, size=%u) "
1119			"iterated only over %u elements\n",
1120			mp, mp->size, num);
1121	}
1122}
1123#else
1124#define mempool_audit_cookies(mp) do {} while(0)
1125#endif
1126
1127#ifndef __INTEL_COMPILER
1128#pragma GCC diagnostic error "-Wcast-qual"
1129#endif
1130
1131/* check cookies before and after objects */
1132static void
1133mempool_audit_cache(const struct rte_mempool *mp)
1134{
1135	/* check cache size consistency */
1136	unsigned lcore_id;
1137
1138	if (mp->cache_size == 0)
1139		return;
1140
1141	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1142		const struct rte_mempool_cache *cache;
1143		cache = &mp->local_cache[lcore_id];
1144		if (cache->len > cache->flushthresh) {
1145			RTE_LOG(CRIT, MEMPOOL, "badness on cache[%u]\n",
1146				lcore_id);
1147			rte_panic("MEMPOOL: invalid cache len\n");
1148		}
1149	}
1150}
1151
1152/* check the consistency of mempool (size, cookies, ...) */
1153void
1154rte_mempool_audit(struct rte_mempool *mp)
1155{
1156	mempool_audit_cache(mp);
1157	mempool_audit_cookies(mp);
1158
1159	/* For case where mempool DEBUG is not set, and cache size is 0 */
1160	RTE_SET_USED(mp);
1161}
1162
1163/* dump the status of the mempool on the console */
1164void
1165rte_mempool_dump(FILE *f, struct rte_mempool *mp)
1166{
1167#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1168	struct rte_mempool_debug_stats sum;
1169	unsigned lcore_id;
1170#endif
1171	struct rte_mempool_memhdr *memhdr;
1172	unsigned common_count;
1173	unsigned cache_count;
1174	size_t mem_len = 0;
1175
1176	RTE_ASSERT(f != NULL);
1177	RTE_ASSERT(mp != NULL);
1178
1179	fprintf(f, "mempool <%s>@%p\n", mp->name, mp);
1180	fprintf(f, "  flags=%x\n", mp->flags);
1181	fprintf(f, "  pool=%p\n", mp->pool_data);
1182	fprintf(f, "  phys_addr=0x%" PRIx64 "\n", mp->mz->phys_addr);
1183	fprintf(f, "  nb_mem_chunks=%u\n", mp->nb_mem_chunks);
1184	fprintf(f, "  size=%"PRIu32"\n", mp->size);
1185	fprintf(f, "  populated_size=%"PRIu32"\n", mp->populated_size);
1186	fprintf(f, "  header_size=%"PRIu32"\n", mp->header_size);
1187	fprintf(f, "  elt_size=%"PRIu32"\n", mp->elt_size);
1188	fprintf(f, "  trailer_size=%"PRIu32"\n", mp->trailer_size);
1189	fprintf(f, "  total_obj_size=%"PRIu32"\n",
1190	       mp->header_size + mp->elt_size + mp->trailer_size);
1191
1192	fprintf(f, "  private_data_size=%"PRIu32"\n", mp->private_data_size);
1193
1194	STAILQ_FOREACH(memhdr, &mp->mem_list, next)
1195		mem_len += memhdr->len;
1196	if (mem_len != 0) {
1197		fprintf(f, "  avg bytes/object=%#Lf\n",
1198			(long double)mem_len / mp->size);
1199	}
1200
1201	cache_count = rte_mempool_dump_cache(f, mp);
1202	common_count = rte_mempool_ops_get_count(mp);
1203	if ((cache_count + common_count) > mp->size)
1204		common_count = mp->size - cache_count;
1205	fprintf(f, "  common_pool_count=%u\n", common_count);
1206
1207	/* sum and dump statistics */
1208#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1209	memset(&sum, 0, sizeof(sum));
1210	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1211		sum.put_bulk += mp->stats[lcore_id].put_bulk;
1212		sum.put_objs += mp->stats[lcore_id].put_objs;
1213		sum.get_success_bulk += mp->stats[lcore_id].get_success_bulk;
1214		sum.get_success_objs += mp->stats[lcore_id].get_success_objs;
1215		sum.get_fail_bulk += mp->stats[lcore_id].get_fail_bulk;
1216		sum.get_fail_objs += mp->stats[lcore_id].get_fail_objs;
1217	}
1218	fprintf(f, "  stats:\n");
1219	fprintf(f, "    put_bulk=%"PRIu64"\n", sum.put_bulk);
1220	fprintf(f, "    put_objs=%"PRIu64"\n", sum.put_objs);
1221	fprintf(f, "    get_success_bulk=%"PRIu64"\n", sum.get_success_bulk);
1222	fprintf(f, "    get_success_objs=%"PRIu64"\n", sum.get_success_objs);
1223	fprintf(f, "    get_fail_bulk=%"PRIu64"\n", sum.get_fail_bulk);
1224	fprintf(f, "    get_fail_objs=%"PRIu64"\n", sum.get_fail_objs);
1225#else
1226	fprintf(f, "  no statistics available\n");
1227#endif
1228
1229	rte_mempool_audit(mp);
1230}
1231
1232/* dump the status of all mempools on the console */
1233void
1234rte_mempool_list_dump(FILE *f)
1235{
1236	struct rte_mempool *mp = NULL;
1237	struct rte_tailq_entry *te;
1238	struct rte_mempool_list *mempool_list;
1239
1240	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1241
1242	rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
1243
1244	TAILQ_FOREACH(te, mempool_list, next) {
1245		mp = (struct rte_mempool *) te->data;
1246		rte_mempool_dump(f, mp);
1247	}
1248
1249	rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
1250}
1251
1252/* search a mempool from its name */
1253struct rte_mempool *
1254rte_mempool_lookup(const char *name)
1255{
1256	struct rte_mempool *mp = NULL;
1257	struct rte_tailq_entry *te;
1258	struct rte_mempool_list *mempool_list;
1259
1260	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1261
1262	rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
1263
1264	TAILQ_FOREACH(te, mempool_list, next) {
1265		mp = (struct rte_mempool *) te->data;
1266		if (strncmp(name, mp->name, RTE_MEMPOOL_NAMESIZE) == 0)
1267			break;
1268	}
1269
1270	rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
1271
1272	if (te == NULL) {
1273		rte_errno = ENOENT;
1274		return NULL;
1275	}
1276
1277	return mp;
1278}
1279
1280void rte_mempool_walk(void (*func)(struct rte_mempool *, void *),
1281		      void *arg)
1282{
1283	struct rte_tailq_entry *te = NULL;
1284	struct rte_mempool_list *mempool_list;
1285	void *tmp_te;
1286
1287	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1288
1289	rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
1290
1291	TAILQ_FOREACH_SAFE(te, mempool_list, next, tmp_te) {
1292		(*func)((struct rte_mempool *) te->data, arg);
1293	}
1294
1295	rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
1296}
1297